Machine Learning

Reinforcement Learning

(thanks in part to Bill Smart at Washington University in St. Louis)

- Supervised learning:
 - (Input, output) pairs of the function to be learned can be perceived or are given.

Back-propagation in Neural Nets

Unsupervised Learning:
 – No information about desired outcomes given

K-means clustering

- Reinforcement learning:
 - Reward or punishment for actions

Q-Learning

Reinforcement Learning

- Task
 - Learn how to behave to achieve a goal
 - Learn through experience from trial and error
- Examples
 - Game playing: The agent knows when it wins, but doesn't know the appropriate action in each state along the way
 - Control: a traffic system can measure the delay of cars, but not know how to decrease it.

The Multi Armed Bandit Problem

Which slot machine do I play?

image from https://velog.io/@taejinjeong/Reinforcement-Learning-Multi-Armed-Bandit-Problem

Multi-Armed Bandits

- What if we can't observe the current state, or we assume there is only one state?
- Common examples:
 - Bidding for advertisement space on websites
 - Price setting in a grocery store
 - Playing slot machines

Multi-Armed Bandits

- The action value Q(a) is the expected reward when we take action a.
- Say we take action a N times, and observe rewards $r_1, r_2, \dots r_N$.

$$Q_{N+1}(a) = E[r|a]$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} r_i$$

$$= Q_N(a) + \frac{1}{N} [r_N - Q_N(a)]$$

 Update based on the difference between expected and observed rewards

Picking Actions

- There are two common approaches.
- Greedy

Pick the action a with the highest current Q(a) estimate.

• ε-greedy

Pick the best action with with probability $1 - \epsilon$ Else, pick the action randomly with equal probability

Multi-Armed Bandits

A simple bandit algorithm

 $\begin{array}{l} \mbox{Initialize, for } a=1 \mbox{ to } k: \\ Q(a) \leftarrow 0 \\ N(a) \leftarrow 0 \\ \mbox{Icop forever:} \\ A \leftarrow \left\{ \begin{array}{l} \mbox{argmax}_a Q(a) & \mbox{with probability } 1-\varepsilon \\ \mbox{a random action } \mbox{with probability } \varepsilon \\ R \leftarrow bandit(A) \\ N(A) \leftarrow N(A) + 1 \\ Q(A) \leftarrow Q(A) + \frac{1}{N(A)} \left[R - Q(A) \right] \end{array} \right. \right.$

Example multi-armed bandit rewards

Image from Reinforcement Learning: An Introduction 2nd Ed by Sutton & Barto

Greedy vs &-Greedy

Image from Reinforcement Learning: An Introduction 2nd Ed by Sutton & Barto

Assumes a stationary world

This update rule:

$$Q_{N+1}(a) = Q_N(a) + \frac{1}{N}[r_N - Q_N(a)]$$

...assumes a stationary world, where the rewards never change.

What if things change over time?

A new update rule

This update rule:

$$Q_{N+1}(a) = Q_N(a) + \alpha [r_N - Q_N(a)]$$

...assumes a world where change can happen. Let's rearrange the terms....

$$Q_{N+1}(a) = Q_N(a) + \alpha [r_N - Q_N(a)]$$

= $Q_N(a) + \alpha r_N - Q_N(a)$
= $(1 - \alpha)Q_N(a) + \alpha r_N$

Now, it should be clear we're balancing our existing knowledge Q(a) vs our new information *r*.

Non-stationary Multi-armed Bandit

A simple bandit algorithm

Initialize, for
$$a = 1$$
 to k :
 $Q(a) \leftarrow 0$
 $N(a) \leftarrow 0$
Loop forever:
 $A \leftarrow \begin{cases} \arg \max_a Q(a) & \text{with probability } 1 - \varepsilon & (\text{breaking ties randomly}) \\ a \text{ random action } & \text{with probability } \varepsilon \end{cases}$
 $R \leftarrow bandit(A)$
 $Q_{N+1}(a) = Q_N(a) + \alpha [r_N - Q_N(a)]$

Note: this formulation is from Sutton & Barto's "Reinforcement Learning" See equation 2.5 on page 32.

Algorithm from Reinforcement Learning: An Introduction 2nd Ed by Sutton & Barto

Actions have consequences

 What if taking an action changes the state of the world?

• This is the full reinforcement learning problem.

Northwestern University Winter 2007 Machine Learning EECS 395-22

Basic RL Model

- 1. Observe state, s_t
- 2. Decide on an action, a_t
- 3. Perform action
- 4. Observe new state, s_{t+1} S
- 5. Observe reward, r_{t+1}
- 6. Learn from experience
- 7. Repeat

•Goal: Find a control policy that will maximize the observed rewards over the lifetime of the agent

An Example: Gridworld

Canonical RL domain
 States are grid cells
 4 actions: N, S, E, W
 Reward for entering top right cell
 -0.01 for every other move

Mathematics of RL

- Before we talk about RL, we need to cover some background material
 - Simple decision theory
 - Markov Decision Processes
 - Value functions
 - Dynamic programming

Making Single Decisions

- Single decision to be made
 - Multiple discrete actions
 - Each action has an associated reward
- Goal is to maximize reward
 Just pick the action with the largest reward
- State 0 has a value of 2
 - Reward from taking the best action

Markov Decision Processes

• We can generalize the previous example to multiple sequential decisions

Each decision affects subsequent decisions

 This is formally modeled by a Markov Decision Process (MDP)

Markov Decision Processes

- Formally, a MDP is
 - $-A \text{ set of states}, S = \{s_1, s_2, ..., s_n\}$
 - A set of actions, A = $\{a_1, a_2, \dots, a_m\}$
 - A reward function, R: $S \times A \times S \rightarrow \Re$
 - A transition function, $P_{ij}^{a} = P(s_{t+1} = j | s_{t} = i, a_{t} = a)$
 - Sometimes T: S×A→S
- We want to learn a policy, π : S \rightarrow A
 - Maximize sum of rewards we see over our lifetime

Policies

- A policy $\pi(s)$ returns the action to take in state s.
- There are 3 policies for this MDP Policy 1: $0 \rightarrow 1 \rightarrow 3 \rightarrow 5$ Policy 2: $0 \rightarrow 1 \rightarrow 4 \rightarrow 5$ Policy 3: $0 \rightarrow 2 \rightarrow 4 \rightarrow 5$

Comparing Policies

- Which policy is best?
- Order them by how much reward they see

Policy 1: $0 \to 1 \to 3 \to 5 = 1 + 1 + 1 = 3$ Policy 2: $0 \to 1 \to 4 \to 5 = 1 + 1 + 10 = 12$ Policy 3: $0 \to 2 \to 4 \to 5 = 2 - 1000 + 10 = -988$

Value Functions

- We can associate a value with each state
 - For a fixed policy
 - How good is it to run policy π from that state s
 - This is the state value function, V

Q Functions

- Define value without specifying the policy
 - Specify the value of taking action A from state S and then performing optimally, thereafter

$Q(s, a) = R(s, a, s') + max_{a'} Q(s', a')$

$V^{\pi}(s) = R(s, \pi(s), s') + V^{\pi}(s')$

s' is the

Value Functions

Value Functions

 These can be extend to probabilistic actions (for when the results of an action are not certain, or when a policy is probabilistic)

$$V^{\pi}(s) = \sum_{s'} P(s' | s, \pi(s)) (R(s, \pi(s), s') + V^{\pi}(s'))$$

 $Q(s,a) = \sum_{s'} P(s'|s,a)(R(s,a,s') + max_{a'} Q(s',a'))$

Getting the Policy

 If we have the value function, then finding the optimal policy, π*(s), is easy...just find the policy that maximized value

$$\pi^*(s) = \arg \max_a (R(s, a, s') + V^{\pi}(s'))$$

 $\pi^*(s) = \arg \max_a Q(s, a)$

Problems with Our Functions

- Consider this MDP
 - Number of steps is now unlimited because of loops
 - Value of states 1 and 2 is infinite for some policies

```
Q(1, A) = 1 + Q(1, A)
= 1 + 1 + Q(1, A)
= 1 + 1 + 1 + Q(1, A)
= ...
```

- This is bad
 - All policies with a nonzero reward cycle have infinite value

Better Value Functions

- Introduce the *discount factor* γ , to get around the problem of infinite value
 - Three interpretations
 - Probability of living to see the next time step
 - Measure of the uncertainty inherent in the world
 - · Makes the mathematics work out nicely

Assume $0 \le \gamma \le 1$

$$V^{\pi}(s) = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

$$Q(s, a) = R(s, a, s') + \gamma max_{a'} Q(s', a')$$

Better Value Functions

Dynamic Programming

 Given the complete MDP model, we can compute the optimal value function directly

[Bertsekas, 87, 95a, 95b]

Reinforcement Learning

- What happens if we don't have the whole MDP?
 - We know the states and actions
 - We don't have the system model (transition function) or reward function
- We're only allowed to sample from the MDP
 - Can observe experiences (s, a, r, s')
 - Need to perform actions to generate new experiences
- This is Reinforcement Learning (RL)
 - Sometimes called Approximate Dynamic Programming (ADP)

Learning Value Functions

- We still want to learn a value function
 - We're forced to approximate it iteratively
 - Based on direct experience of the world

Four main algorithms

Certainty equivalence
TD λ learning
Q-learning
SARSA

Certainty Equivalence

- Collect experience by moving through the world $-s_0, a_0, r_1, s_1, a_1, r_2, s_2, a_2, r_3, s_3, a_3, r_4, s_4, a_4, r_5, s_5, ...$
- Use these to estimate the underlying MDP
 - Transition function, T: $S \times A \rightarrow S$
 - Reward function, R: $S \times A \times S \rightarrow \Re$
- Compute the optimal value function for this MDP
- And then compute the optimal policy from it

How are we going to do this?

- Reward whole policies?
 - That could be a pain
- What about incremental rewards?
 - Everything has a reward of 0 except for the goal
- Now what???

Exploration vs. Exploitation

- We want to pick good actions most of the time, but also do some exploration
- Exploring means we can learn better policies
- But, we want to balance known good actions with exploratory ones
- This is the exploration/exploitation problem

On-Policy vs. Off Policy

- On-policy algorithms
 - Final policy is influenced by the exploration policy
 - Generally, the exploration policy needs to be "close" to the final policy
 - Can get stuck in local maxima
- Off-policy algorithms

- Given enough experience
- Final policy is independent of exploration policy
- Can use arbitrary exploration policies
- Will not get stuck in local maxima

Picking Actions

ε-greedy

- Pick best (greedy) action with probability 1 ϵ
- Otherwise, pick a random action
- Boltzmann (Soft-Max)
 - Pick an action based on its Q-value

$$P(a \mid s) = \frac{e^{\left(\frac{Q(s,a)}{\tau}\right)}}{\sum_{a'} e^{\left(\frac{Q(s,a')}{\tau}\right)}}$$
...where τ is the "temperature"

TD(I)

- TD-learning estimates the value function directly

 Don't try to learn the underlying MDP
 [Sutton, 88]
- Keep an estimate of $V^{\pi}(s)$ in a table
 - Update these estimates as we gather more experience
 - Estimates depend on exploration policy, $\boldsymbol{\pi}$
 - TD is an on-policy method

TD(0)-Learning Algorithm

- Initialize $V^{\pi}(s)$ to 0
- Make a (possibly randomly created) policy π
- For each 'episode' (episode = series of actions)
 - 1 Observe state s
 - 2. Perform action according to the policy $\pi(s)$

3.
$$V(s) \leftarrow V(s) + \alpha[r + \gamma V(s') - V(s)]$$

- Repeat until out of actions 5.
- Update policy given newly learned values
- Start a new episode

Note: this formulation is from Sutton & Barto's "Reinforcement Learning"

```
r = reward
\alpha = learning rate
```

$$\gamma$$
= discount factor

(Tabular) TD-Learning Algorithm

- 1. Initialize $V^{\pi}(s)$ to 0, and $e(s) = 0 \forall s$
- 2. Observe state, s
- 3. Perform action according to the policy $\pi(s)$
- 4. Observe new state, s', and reward, r

5.
$$\delta \leftarrow r + \gamma V^{\pi}(s') - V^{\pi}(s)$$

- 6. $e(s) \leftarrow e(s)+1$
- 7. For all states j $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha \delta e(j)$ $e(j) \leftarrow \gamma \lambda e(s)$
- 8. Go to 2

 γ = future returns discount factor λ = eligibility discount α = learning rate

TD-Learning

- $V^{\pi}(s)$ is guaranteed to converge to $V^{*}(s)$
 - After an infinite number of experiences
 - If we decay the learning rate

- In practice, we often don't need value convergence
 - Policy convergence generally happens sooner

SARSA

- SARSA iteratively approximates the state-action value function, Q
 - Like Q-learning, SARSA learns the policy and the value function simultaneously
- Keep an estimate of Q(s, a) in a table
 - Update these estimates based on experiences
 - Estimates depend on the exploration policy
 - SARSA is an on-policy method
 - Policy is derived from current value estimates

SARSA Algorithm

- 1. Initialize Q(s, a) to small random values, \forall s, a
- 2. Observe state, s
- 3. $a \leftarrow \pi(s)$ (pick action according to policy)
- 4. Observe next state, s', and reward, r
- 5. $Q(s, a) \leftarrow Q(s, a) + \alpha(r + \gamma Q(s', \pi(s')) Q(s, a))$
- 6. Go to 2
- $0 \le \alpha \le 1$ is the learning rate
 - We should decay this, just like TD

Q-Learning

- Q-learning iteratively approximates the stateaction value function, Q
 - We won't estimate the MDP directly
 - Learns the value function and policy simultaneously
- Keep an estimate of Q(s, a) in a table
 - Update these estimates as we gather more experience
 - Estimates do not depend on exploration policy
 - Q-learning is an off-policy method

Q-Learning Algorithm

- Initialize Q(s, a) to small random values, ∀s, a (what if you make them 0? What if they are big?)
- 2. Observe state, s
- 3. Randomly (or ϵ greedy) pick action, a
- 4. Observe next state, s', and reward, r
- 5. $Q(s, a) \leftarrow Q(s, a) + \alpha(r + \gamma max_{a'}Q(s', a') Q(s, a))$
- 6. s ←s'
- 7. Go to 2

 $0 \le \alpha \le 1$ is the learning rate & we should decay α , just like in TD Note: this formulation is from Sutton & Barto's "Reinforcement Learning"

Breaking apart that update formula

 $Q(s, a) \leftarrow Q(s, a) + \alpha(r + \gamma max_{a'}Q(s', a') - Q(s, a))$

This can be written another way...

 $Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha(r + \gamma max_{a'}Q(s', a'))$

Looked at this way, it is more obvious that α controls whether we value past experience more or new experience more.

Northwestern University Winter 2007 Machine Learning EECS 395-22

Q-learning

 Q-learning, learns the expected utility of taking a particular action a in state s

r(state, action) immediate reward values

V*(*state*) values

Q(*state*, *action*) values

Convergence Guarantees

- The convergence guarantees for RL are "in the limit"
 - The word "infinite" crops up several times
- Don't let this put you off
 - Value convergence is different than policy convergence
 - We're more interested in policy convergence
 - If one action is significantly better than the others, policy convergence will happen relatively quickly

Rewards

- Rewards measure how well the policy is doing
 - Often correspond to events in the world
 - Current load on a machine
 - Reaching the coffee machine
 - Program crashing
 - Everything else gets a 0 reward

These are sparse rewards

- Things work better if the rewards are incremental
 These are
 - For example, distance to goal at each step
 - These reward functions are often hard to design

The Markov Property

- RL needs a set of states that are Markov
 - Everything you need to know to make a decision is included in the state
 - Not allowed to consult the past
- Rule-of-thumb
 - If you can calculate the reward function from the state without any additional information, you're OK

But, What's the Catch?

- RL will solve all of your problems, but
 - We need lots of experience to train from
 - Taking random actions can be dangerous
 - It can take a long time to learn
 - Not all problems fit into the MDP framework

Learning Policies Directly

- An alternative approach to RL is to reward whole policies, rather than individual actions
 - Run whole policy, then receive a single reward
 - Reward measures success of the whole policy
- If there are a small number of policies, we can exhaustively try them all
 - However, this is not possible in most interesting problems

Policy Gradient Methods

- Assume that our policy, p, has a set of n realvalued parameters, q = {q₁, q₂, q₃, ..., q_n }
 - Running the policy with a particular q results in a reward, r_q
 - Estimate the reward gradient, $\frac{\partial R}{\partial \theta_i}$, for each q_i

$$\theta_{i} \leftarrow \theta_{i} \leftarrow \frac{\partial R}{\partial \theta_{i}}$$
This is another learning rate

Policy Gradient Methods

- This results in hill-climbing in policy space
 - So, it's subject to all the problems of hill-climbing
 - But, we can also use tricks from search, like random restarts and momentum terms
- This is a good approach if you have a parameterized policy
 - Typically faster than value-based methods
 - "Safe" exploration, if you have a good policy
 - Learns locally-best parameters for that policy

An Example: Learning to Walk

[Kohl & Stone, 04]

RoboCup legged league

– Walking quickly is a *big* advantage

- Robots have a parameterized gait controller
 - 11 parameters
 - Controls step length, height, etc.

- Robots walk across soccer pitch and are timed
 - Reward is a function of the time taken

An Example: Learning to Walk

- Basic idea
 - 1. Pick an initial $\theta = \{\theta_1, \theta_2, \dots, \theta_{11}\}$
 - 2. Generate N testing parameter settings by perturbing θ $\theta^{j} = \{\theta_{1} + \delta_{1}, \theta_{2} + \delta_{2}, \dots, \theta_{11} + \delta_{11}\}, \delta_{i} \in \{-\epsilon, 0, \epsilon\}$
 - 3. Test each setting, and observe rewards $\theta^{j} \rightarrow r_{j}$
 - 4. For each $\theta_i \in \theta$ Calculate θ_1^+ , θ_1^0 , θ_1^- and set $\theta'_i \leftarrow \theta_i + \begin{cases} \delta & \text{if } \theta_i^+ \text{ largest} \\ 0 & \text{if } \theta_i^0 \text{ largest} \end{cases}$
 - 5. Set $\theta \leftarrow \theta$ ', and go to 2

$$\leftarrow \theta_{i} + \begin{cases} \delta & \text{if } \theta_{i}^{+} \text{ largest} \\ 0 & \text{if } \theta_{i}^{0} \text{ largest} \\ -\delta & \text{if } \theta_{i}^{-} \text{ largest} \end{cases}$$

$$Average reward \\ when q_{i}^{n} = q_{i} - d_{i} \end{cases}$$

An Example: Learning to Walk

Initial

http://utopia.utexas.edu/media/features/av.qtl

Video: Nate Kohl & Peter Stone, UT Austin

Value Function or Policy Gradient?

- When should I use policy gradient?
 - When there's a parameterized policy
 - When there's a high-dimensional state space
 - When we expect the gradient to be smooth
- When should I use a value-based method?
 - When there is no parameterized policy
 - When we have no idea how to solve the problem