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Machine Learning

Reinforcement Learning
(thanks in part to Bill Smart at Washington University in St. Louis)



Learning Types

• Supervised learning:
– (Input, output) pairs of the function to be learned can 

be perceived or are given.

Back-propagation in Neural Nets

• Unsupervised Learning:
– No information about desired outcomes given

K-means clustering

• Reinforcement learning:
– Reward or punishment for actions

Q-Learning
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Reinforcement Learning

• Task
– Learn how to behave to achieve a goal
– Learn through experience from trial and error

• Examples
– Game playing: The agent knows when it wins, but 

doesn’t know the appropriate action in each state 
along the way

– Control: a traffic system can measure the delay of 
cars, but not know how to decrease it.
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The Multi Armed Bandit Problem

Which slot machine do I play? 

image from https://velog.io/@taejinjeong/Reinforcement-Learning-Multi-Armed-Bandit-Problem



Multi-Armed Bandits
• What if we can’t observe the current state, or 

we assume there is only one state?

• Common examples:
– Bidding for advertisement space on websites
– Price setting in a grocery store
– Playing slot machines
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Multi-Armed Bandits
• The action value Q(a) is the expected reward 

when we take action a.
• Say we take action a N times, and observe 

rewards 𝑟!, 𝑟", … 𝑟#.

• Update based on the difference between 
expected and observed rewards
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Picking Actions

• There are two common approaches. 

• Greedy 
Pick the action a with the highest current Q(a) estimate. 

• e-greedy
Pick the best action with with probability 1 – e
Else, pick the action randomly with equal probability
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Multi-Armed Bandits

Algorithm from Reinforcement Learning: An Introduction 2nd Ed by Sutton & Barto



Example multi-armed bandit rewards 



Greedy vs e-Greedy

Image  from Reinforcement Learning: An Introduction 2nd Ed by Sutton & Barto



Assumes a stationary world
This update rule:

…assumes a stationary world, where the 
rewards never change.  

What if things change over time?
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A new update rule
This update rule:

…assumes a world where change can happen. Let’s 
rearrange the terms….

Now, it should be clear we’re balancing our existing 
knowledge Q(a) vs our new information r. 
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Non-stationary Multi-armed Bandit

Algorithm from Reinforcement Learning: An Introduction 2nd Ed by Sutton & Barto

𝑄!"# 𝑎 = 𝑄! 𝑎 + 𝛼 𝑟! − 𝑄!(𝑎)

Note: this formulation is from Sutton & Barto’s “Reinforcement Learning” 
See equation 2.5 on page 32. 



Actions have consequences

• What if taking an action changes the state 
of the world?

• This is the full reinforcement learning 
problem.
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Basic RL Model

1. Observe state, st
2. Decide on an action, at
3. Perform action
4. Observe new state, st+1
5. Observe reward, rt+1
6. Learn from experience
7. Repeat

•Goal: Find a control policy that will maximize the 
observed rewards over the lifetime of the agent

AS R

World
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An Example: Gridworld

• Canonical RL domain
States are grid cells
4 actions: N, S, E, W
Reward for entering top right cell
-0.01 for every other move

+1
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Mathematics of RL

• Before we talk about RL, we need to cover 
some background material
– Simple decision theory
– Markov Decision Processes
– Value functions
– Dynamic programming
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Making Single Decisions

• Single decision to be made
– Multiple discrete actions
– Each action has an associated reward 

• Goal is to maximize reward
– Just pick the action with the largest reward

• State 0 has a value of 2
– Reward from taking the best action
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Markov Decision Processes

• We can generalize the previous example to 
multiple sequential decisions
– Each decision affects subsequent decisions

• This is formally modeled by a Markov Decision 
Process (MDP)
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Markov Decision Processes

• Formally, a MDP is
– A set of states, S = {s1, s2, ... , sn}
– A set of actions, A = {a1, a2, ... , am}
– A reward function, R: S´A´S→Â
– A transition function, 

• Sometimes T: S´A→S

• We want to learn a policy, p: S →A
– Maximize sum of rewards we see over our 

lifetime
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Policies
• A policy p(s) returns the action to take in state s.

• There are 3 policies for this MDP
Policy 1:   0 →1 →3 →5 
Policy 2:   0 →1 →4 →5
Policy 3:   0 →2 →4 →5
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Comparing Policies

• Which policy is best?
• Order them by how much reward they see

Policy 1:   0 →1 →3 →5 = 1 + 1 + 1 = 3
Policy 2:   0 →1 →4 →5 = 1 + 1 + 10 = 12
Policy 3:   0 →2 →4 →5 = 2 – 1000 + 10 = -988
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Value Functions
• We can associate a value with each state

– For a fixed policy
– How good is it to run policy p from that state s
– This is the state value function, V
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Q Functions

• Define value without specifying the policy
– Specify the value of taking action A from state S and 

then performing optimally, thereafter 
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Value Functions

• This gives us two value functions:

Vp(s) = R(s, p(s), s’) + Vp(s’)

Q(s, a) = R(s, a, s’) + maxa’ Q(s’, a’)

s’ is the
next state

a’ is the
next action
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Value Functions

• These  can be extend to probabilistic actions
(for when the results of an action are not certain, or 

when a policy is probabilistic)
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Getting the Policy

• If we have the value function, then finding 
the optimal policy, p*(s), is easy…just find 
the policy that maximized value 

p*(s) = arg maxa (R(s, a, s’) + Vp(s’))

p*(s) = arg maxa Q(s, a)
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Problems with Our Functions

• Consider this MDP
– Number of steps is now unlimited because of loops
– Value of states 1 and 2 is infinite for some policies

Q(1, A) = 1 + Q(1, A)
Q(1, A) = 1 + 1 + Q(1, A)
Q(1, A) = 1 + 1 + 1 + Q(1, A)
Q(1, A) = ...

• This is bad
– All policies with a non-

zero reward cycle have                                        
infinite value
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Better Value Functions

• Introduce the discount factor g, to get around 
the problem of infinite value

– Three interpretations
• Probability of living to see the next time step
• Measure of the uncertainty inherent in the world
• Makes the mathematics work out nicely

Assume 0 ≤ g ≤ 1

Vp(s) = R(s, p(s), s’) + gVp(s’)

Q(s, a) = R(s, a, s’) + gmaxa’ Q(s’, a’)
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Better Value Functions

• Optimal Policy:
p(0) = B
p(1) = A
p(2) = A
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Dynamic Programming

• Given the complete MDP model, we can 
compute the optimal value function directly

[Bertsekas, 87, 95a, 95b]
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Reinforcement Learning

• What happens if we don’t have the whole MDP?
– We know the states and actions
– We don’t have the system model (transition function) 

or reward function
• We’re only allowed to sample from the MDP

– Can observe experiences (s, a, r, s’)
– Need to perform actions to generate new experiences

• This is Reinforcement Learning (RL)
– Sometimes called Approximate Dynamic 

Programming (ADP)
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Learning Value Functions

• We still want to learn a value function
– We’re forced to approximate it iteratively
– Based on direct experience of the world

• Four main algorithms
– Certainty equivalence
– TD l learning
– Q-learning
– SARSA
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Certainty Equivalence

• Collect experience by moving through the world
– s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, a3, r4, s4, a4, r5, s5, ...

• Use these to estimate the underlying MDP
– Transition function, T: S´A → S
– Reward function, R: S´A´S → Â

• Compute the optimal value function for this MDP

• And then compute the optimal policy from it
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How are we going to do this?

• Reward whole 
policies?
– That could be a pain

• What about 
incremental rewards?
– Everything has a 

reward of  0 except for 
the goal

• Now what???

S

G

100 
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Exploration vs. Exploitation

• We want to pick good actions most of the time, 
but also do some exploration

• Exploring means we can learn better policies

• But, we want to balance known good actions 
with exploratory ones

• This is the exploration/exploitation problem
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On-Policy vs. Off Policy

• On-policy algorithms
– Final policy is influenced by the exploration policy
– Generally, the exploration policy needs to be “close”

to the final policy
– Can get stuck in local maxima

• Off-policy algorithms
– Final policy is independent of exploration policy
– Can use arbitrary exploration policies
– Will not get stuck in local maxima

Given enoughexperience
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Picking Actions

e-greedy
– Pick best (greedy) action with probability 1 - e
– Otherwise, pick a random action

• Boltzmann (Soft-Max)
– Pick an action based on its Q-value

…where t is the “temperature”
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TD(l)

• TD-learning estimates the value function directly
– Don’t try to learn the underlying MDP

• Keep an estimate of Vp(s) in a table
– Update these estimates as we gather more 

experience
– Estimates depend on exploration policy, p
– TD is an on-policy method

[Sutton, 88]
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TD(0)-Learning Algorithm
• Initialize Vp(s) to 0
• Make a (possibly randomly created) policy p
• For each ‘episode’ (episode = series of actions)

1. Observe state s
2. Perform action according to the policy p(s)
3. V(s) ← V(s) +a[r + gV(s’) – V(s)]
4. s ← s’
5. Repeat until out of actions

• Update policy given newly learned values
• Start a new episode

r = reward
a= learning rate
g= discount factorNote: this formulation is from Sutton & 

Barto’s “Reinforcement Learning”
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(Tabular) TD-Learning Algorithm

1. Initialize Vp(s) to 0, and e(s) = 0"s
2. Observe state, s
3. Perform action according to the policy p(s)
4. Observe new state, s’, and reward, r
5. d ← r + gVp(s’) - Vp(s) 
6. e(s) ← e(s)+1
7. For all states j

Vp(s) ← Vp(s) + a de(j)
e(j) ←gle(s)

8. Go to 2
g  = future returns 
discount factor
l = eligibility discount
a = learning rate

Northwestern University, EECS 349, 2017



TD-Learning

• Vp(s) is guaranteed to converge to V*(s)
– After an infinite number of experiences
– If we decay the learning rate

will work

• In practice, we often don’t need value 
convergence
– Policy convergence generally happens sooner
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SARSA

• SARSA iteratively approximates the state-action 
value function, Q
– Like Q-learning, SARSA learns the policy and the 

value function simultaneously

• Keep an estimate of Q(s, a) in a table
– Update these estimates based on experiences
– Estimates depend on the exploration policy
– SARSA is an on-policy method
– Policy is derived from current value estimates
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SARSA Algorithm

1. Initialize Q(s, a) to small random values, "s, a
2. Observe state, s
3. a ← p(s)   (pick action according to policy)
4. Observe next state, s’, and reward, r
5. Q(s, a) ← Q(s, a) + a(r + gQ(s’, p(s’)) – Q(s, a))
6. Go to 2

• 0 ≤ a ≤ 1 is the learning rate
– We should decay this, just like TD
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Q-Learning
• Q-learning iteratively approximates the state-

action value function, Q
– We won’t estimate the MDP directly
– Learns the value function and policy simultaneously

• Keep an estimate of Q(s, a) in a table
– Update these estimates as we gather more 

experience
– Estimates do not depend on exploration policy
– Q-learning is an off-policy method

[Watkins & Dayan, 92]
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Q-Learning Algorithm
1. Initialize Q(s, a) to small random values, "s, a

(what if you make them 0? What if they are big?)
2. Observe state, s
3. Randomly (or e greedy) pick action, a 
4. Observe next state, s’, and reward, r
5. Q(s, a)←Q(s, a) + a(r + gmaxa’Q(s’, a’) – Q(s, a))
6. s ←s’
7. Go to 2

0 ≤ a ≤ 1 is the learning rate & we should decay a, just like in TD
Note: this formulation is from Sutton & Barto’s “Reinforcement Learning”
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Breaking apart that update formula

Q(s, a)←Q(s, a) + a(r + gmaxa’Q(s’, a’) – Q(s, a))

This can be written another way…

Q(s, a)←(1- a )Q(s, a) + a(r + gmaxa’Q(s’, a’))

Looked at this way, it is more obvious that a 
controls whether we value past experience more 
or new experience more.
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• Q-learning, learns the expected utility of 

taking a particular action a in state s
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Convergence Guarantees

• The convergence guarantees for RL are “in the 
limit”
– The word “infinite” crops up several times

• Don’t let this put you off
– Value convergence is different than policy 

convergence
– We’re more interested in policy convergence
– If one action is significantly better than the others, 

policy convergence will happen relatively quickly
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Rewards

• Rewards measure how well the policy is doing
– Often correspond to events in the world

• Current load on a machine
• Reaching the coffee machine
• Program crashing

– Everything else gets a 0 reward

• Things work better if the rewards are 
incremental
– For example, distance to goal at each step
– These reward functions are often hard to design

These aredense rewards

These aresparse rewards
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The Markov Property

• RL needs a set of states that are Markov
– Everything you need to know to make a decision is 

included in the state
– Not allowed to consult the past

• Rule-of-thumb
– If you can calculate the reward                         

function from the state without                                 
any additional information,                                   
you’re OK
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But, What’s the Catch?

• RL will solve all of your problems, but
– We need lots of experience to train from
– Taking random actions can be dangerous
– It can take a long time to learn
– Not all problems fit into the MDP framework
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Learning Policies Directly

• An alternative approach to RL is to reward whole 
policies, rather than individual actions
– Run whole policy, then receive a single reward
– Reward measures success of the whole policy

• If there are a small number of policies, we can 
exhaustively try them all
– However, this is not possible in most interesting 

problems
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Policy Gradient Methods

• Assume that our policy, p, has a set of n real-
valued parameters, q = {q1, q2, q3, ... , qn }
– Running the policy with a particular q results in a 

reward, rq

– Estimate the reward gradient,         , for each qi 
iθ
R
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Policy Gradient Methods

• This results in hill-climbing in policy space
– So, it’s subject to all the problems of hill-climbing
– But, we can also use tricks from search, like random 

restarts and momentum terms

• This is a good approach if you have a 
parameterized policy
– Typically faster than value-based methods
– “Safe” exploration, if you have a good policy
– Learns locally-best parameters for that policy
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An Example: Learning to Walk

• RoboCup legged league
– Walking quickly is a big advantage

• Robots have a parameterized gait controller
– 11 parameters
– Controls step length, height, etc.

• Robots walk across soccer pitch and are timed
– Reward is a function of the time taken

[Kohl & Stone, 04]
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An Example: Learning to Walk

• Basic idea
1. Pick an initial q = {q1, q2, ... , q11}
2. Generate N testing parameter settings by perturbing q

qj = {q1 + d1, q2 + d2, ... , q11 + d11},    di Î {-e, 0, e}
3. Test each setting, and observe rewards

qj → rj

4. For each qi Î q
Calculate q1

+, q1
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- and set
5. Set q ← q’, and go to 2
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An Example: Learning to Walk

Video: Nate Kohl & Peter Stone, UT Austin

Initial Final

http://utopia.utexas.edu/media/features/av.qtl
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Value Function or Policy Gradient?

• When should I use policy gradient?
– When there’s a parameterized policy
– When there’s a high-dimensional state space
– When we expect the gradient to be smooth

• When should I use a value-based 
method?
– When there is no parameterized policy
– When we have no idea how to solve the 

problem
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