
(contains ideas and a few images from wikipedia and books by Alpaydin, 
Duda/Hart/Stork, and Bishop. Updated Fall 2015)

Machine Learning

Topic: Linear Regression Models
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There is a set of possible examples

Each example is a vector of k real valued attributes

There is a target function that maps X onto some real value Y

The DATA is a set of tuples <example, response value>

Find a hypothesis h such that...

Regression Learning Task

X = {x1,...xn}

xi =< xi1,..., xik >

YXf ®:

∀x,h(x) ≈ f (x)
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{< x1, y1 >,...< xn, yn >}



Why use a linear regression model?

• Easily understood

• Interpretable

• Well studied by statisticians
– many variations and diagnostic measures

• Computationally efficient
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Linear Regression Model
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Assumption: The observed response (dependent) 
variable, y, is the true function, f(x), with additive Gaussian 
noise, ε, which has a mean of 0.

Observed response

Where

y = f (x)+ ε

Assumption: The expected value of the response variable y
is a linear combination of the k independent attributes/features)



The Hypothesis Space

Given the assumptions on the previous slide, our 
hypothesis space is the set of linear functions 
(hyperplanes)

The goal is to learn a k+1 dimensional vector of weights                                         
that define a hyperplane minimizing an error criterion.
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h(x) = w0 +w1x1 +w2x2 + ...wkxk

w =< w0,w1,...wk >

(w0  is the offset from the origin. You always need w0 )



Simple Linear Regression
• x has 1 attribute a (predictor variable)
• Hypothesis function is a line:

Example:
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ŷ = h(x) = w0 +w1x

x

y



The Error Criterion
Typically estimate parameters by minimizing sum 
of squared residuals (RSS)…also known as the 
Sum of Squared Errors (SSE)
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Multiple (Multivariate*) Linear Regression

• Many attributes 
• h(x) function is a hyperplane
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*NOTE: In statistical literature, multivariate linear 
regression is regression with multiple outputs, 
and the case of multiple input variables is simply
“multiple linear regression”

h(x) = w0 +w1x1 +w2x2 + ...wkxk

x1

x2

x1,...xk



Formatting the data 
Create a new 0 dimension with 1 and append it to the 
beginning of every example vector 
This placeholder corresponds to the offset

Format the data as a matrix of examples x and a vector of 
response values y…
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One training example 

xi =<1, xi,1, xi,2 ..., xi,k >

xi w0
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There is a closed-form solution!
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w = (XTX)−1XTy

RSS = (yi
i

n

∑ − h(xi ))
2

It turns out that there is a close-form solution to this problem!

Our goal is to find the weights of a function….

…that minimizes the sum of squared residuals:

h(x) = w0 +w1x1 +w2x2 + ...wkxk

Just plug your training data into the above formula and the
best hyperplane comes out!



RSS in vector/matrix notation
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RSS(w) = (yii=1

n∑ − h(xi ))
2

             = (yii=1

n∑ −w0 − xijj=1

k∑ wj )
2

             = (y −Xw)T (y −Xw)



Deriving the formula to find w
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RSS(w) = (y −Xw)T (y −Xw)
∂RSS
∂w

= −2XT (y −Xw)

0 = −2XT (y −Xw)
0 = XT (y −Xw)
0 = XTy −XTXw

XTXw = XTy
w = (XTX)−1XTy



What if X is not invertible?

• We said there was a closed form solution:

• This presupposes matrix           is invertible (non 
singular) and we can therefore find 

• If two columns of X are exactly linearly related and thus 
not independent, then            is NOT invertible

• What then?
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w = (XTX)−1XTy

(XTX)−1
(XTX)

(XTX)



Your Friend: Dimensionality Reduction

• We need to make every column of X 
independent.

• The easy way: add a small amount random 
noise (with an expected value of 0)  to X.
– This is useful when you can’t get rid of redundant columns for 

some reason
– For example, your input data file is a 1000 examples of a 

constant value . You still want the code to return something, so 
you add a touch of noise and it will run and return something. 

• The (often) better way: do dimensionality 
reduction to get rid of those redundant columns. 
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Making polynomial regression

You’re familiar with linear regression where the 
input has k dimensions. 

We can use this same machinery to make 
polynomial regression from a one-dimensional 
input…..
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h(x) = w0 +w1x +w2x
2 + ...wkx

k

h(x) = w0 +w1x1 +w2x2 + ...wkxk



Making polynomial regression
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h(x) = w0 +w1z +w2z
2 + ...wkz

k

Given a scalar example z. We can
make a k+1 dimensional example x

x = z0, z1, z2,..., zk

The ith element of x is the power  zi



Making polynomial regression
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h(x) = w0 +w1x1 +w2x2 + ...wkxk
= w0 +w1z +w2z

2 + ...wkz
k

Since                    we can interpret the 
output of the regression as a polynomial 
function of  

xk ≡ z
k

z



Polynomial Regression

• Model the relationship between the response variable 
and the attributes/predictor variables as a kth-order 
polynomial. While this can model non-linear functions, it 
is still linear with respect to the coefficients. 
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Polynomial Regression

Parameter estimation (analytically minimizing sum 
of squared residuals):
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(Note, there is only 1 attribute z for each  training example. 
Those superscripts are powers, since we’re doing polynomial regression)

One training example 
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What is your hypothesis for       ?

Tuning Model Complexity: Example
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What is your hypothesis for       ?

Tuning Model Complexity: Example
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Tuning Model Complexity: Example
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Tuning Model Complexity: Example
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Tuning Model Complexity: Example
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Tuning Model Complexity: Example
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Tuning Model Complexity: Example

What happens if we fit to more data?
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Tuning Model Complexity: Example

What happens if we fit to more data?
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Bias and Variance of an Estimator
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• Let X be a sample from a population specified by 
a true parameter 

• Let d=d(X) be an estimator for   

mean square error variance bias2



Bias and Variance
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As we increase complexity, bias decreases (a better fit 
to data) and variance increases (fit varies more with data)

Order of a polynomial fit to some data



Bias and Variance of Hypothesis Fn

• Bias:
Measures how much h(x) is wrong disregarding the 

effect of varying samples  (This the statistical bias of an 
estimator. This is NOT the same as inductive bias, which is the set of 
assumptions that your learner is making)

• Variance:
Measures how much h(x) fluctuate around the expected 

value as the sample varies.

NOTE: These concepts are general machine learning 
concepts, not specific to linear regression.
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Coefficient of Determination

• the coefficient of determination, or R2
indicates how well data points fit a line or 
curve.  We’d like R2 to be close to 1
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ERSS =
(yi

i

n

∑ − h(xi ))
2
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∑ − y )2
       where y  is the sample mean

S



Don’t just rely on numbers, visualize!

Mark Cartwright and Bryan Pardo, Machine Learning: EECS 349 Fall 2021 32

For all 4 sets: same mean and variance for x, same mean and 
variance (almost) for y, and same regression line and correlation 
between x and y (and therefore same R-squared).



Summary of Linear Regression Models

• Easily understood
• Interpretable
• Well studied by statisticians
• Computationally efficient
• Can handle non-linear situations if formulated 

properly
• Bias/variance tradeoff (occurs in all machine 

learning)
• Visualize!!
• GLMs
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Appendix

(Stuff I couldn’t cover in class)
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Bias and Variance
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high bias, low variance



Bias and Variance
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high bias, high variance



Bias and Variance
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low bias, high variance



Bias and Variance
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low bias, low variance



Bias and Variance

• Bias:
Measures how much h(x) is wrong disregarding the 

effect of varying samples
high bias underfitting

• Variance:
Measures how much h(x) fluctuate around the expected 

value as the sample varies.
high variance overfitting

There’s a trade-off between bias and variance
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Ways to Avoid Overfitting

• Simpler model
– E.g. fewer parameters

• Regularization
– penalize for complexity in objective function

• Fewer features

• Dimensionality reduction of features (e.g. PCA)

• More data…
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Model Selection

• Cross-validation: Measure generalization accuracy by 
testing on data unused during training

• Regularization: Penalize complex models
E’=error on data + λ model complexity
Akaike’s information criterion (AIC), Bayesian 
information criterion (BIC)

• Minimum description length (MDL): Kolmogorov 
complexity, shortest description of data

• Structural risk minimization (SRM)
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Generalized Linear Models

• Models shown have assumed that the response 
variable follows a Gaussian distribution around 
the mean 

• Can be generalized to response variables that 
take on any exponential family distribution 
(Generalized Linear Models - GLMs)
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