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There is a set of possible examples

Each example is a vector of k real valued attributes

A target function maps X onto some real value Y

The DATA is a set of tuples <example, response value>

Find a hypothesis h such that...

Recall: Regression Learning Task

X = {x1,...xn}

xi =< xi1,..., xik >

YXf ®:

∀x,h(x) ≈ f (x)
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There is a set of possible examples

Each example is a vector of k real valued attributes

A target function maps X onto some categorical variable Y

The DATA is a set of tuples <example, response value>

Find a hypothesis h such that...

Discrimination Learning Task

X = {x1,...xn}

xi =< xi1,..., xik >

YXf ®:

∀x,h(x) ≈ f (x)
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{< x1, y1 >,...< xn, yn >}



Reminder about notation

• x	is	a	vector	of	attributes	<𝑥!, 𝑥",…𝑥#>

• w	is	a	vector	of	weights	<𝑤!, 𝑤",…𝑤#>

• Given	this…
𝑔 𝑥 = 𝑤$+𝑤!𝑥! +𝑤"𝑥"….+𝑤#𝑥#

• We	can	notate	it	with	linear	algebra	as
𝑔 𝑥 = 𝑤$+𝐰𝐓𝐱
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Recall: 𝑤!
• 𝑔 𝑥 = 𝑤$+𝐰𝐓𝐱 is	ALMOST	what	we	want,	but	
that	pesky	offset	𝑤$ is	not	in	the	linear	algebra	
part	yet.

• If	we	define	w to	include	𝑤$ and	x to	include	an	𝑥$
that	is	always	1,	now…

x	is	a	vector	of	attributes	<1,	𝑥!, 𝑥",…𝑥#>
w	is	a	vector	of	weights	<𝑤$, 𝑤!, 𝑤",…𝑤#>

• This	lets	us	notate	things	as…
𝑔 𝑥 = 𝐰𝐓𝐱
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Visually: Where to draw the line?
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Two-Class Classification

7

h x( ) =  1 if g x( ) > 0
−1 otherwise

⎧
⎨
⎪

⎩⎪

defines a decision boundary that splits the space in twog(x) = 0

x1

If a line exists that does this 
without error, the classes 
are linearly separable
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g(x) = w0 +w1x1 +w2x2 = 0

g(x) > 0

x2

g(x) < 0

w



Example 2-D decision boundaries
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0 = 𝑔 𝑥 = 𝑤!+𝑤"𝑥"+𝑤#𝑥# = 𝐰$X
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𝑥!

𝑥"

𝑤# = −5
𝑤! = 0
𝑤" = 1

𝑤# = −5
𝑤! = 0.5
𝑤" = 0

𝑤# = 0
𝑤! = 1
𝑤" = -1



What’s the difference?
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0 = 𝑔 𝑥 = 𝑤!+𝑤"𝑥"+𝑤#𝑥# = 𝐰$X

10

10

𝑥!

𝑥"

𝑤! = 0
𝑤" = 1
𝑤# = -1

10

10

𝑥!

𝑥"

𝑤! = 0
𝑤" = -1
𝑤# = 1

What’s the difference between these two?

h x( ) =  1 if g x( ) > 0
−1 otherwise

⎧
⎨
⎪

⎩⎪



Loss/Objective function

• To train a model (e.g. learn the weights of a useful line) 
we define a measure of the ”goodness” of that model. 
(e.g. the number of misclassified points).

• We make that measure a function of the parameters of 
the model (and the data). 

• This is called a loss function, or an objective function.

• We want to minimize the loss (or maximize the 
objective) by picking good model parameters.

Bryan Pardo and Zach Wood-Doughty, Machine Learning: EECS 349 Fall 2021 10



Classification via regression

• Linear regression’s loss function is the the squared 
distance from a data point to the line, summed over all 
data points.

• The line that minimizes this function can be calculated 
by applying a simple formula.

• Can we find a decision boundary in one step, by just 
repurposing the math we used for finding a regression 
line?
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w = (XTX)−1XTy



Classification via regression

• Label each class by a number

• Call that number the response variable

• Derive closed-form regression solution

• Round the regression prediction to the 
nearest label number
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An example
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What happens now?
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Classification via regression take-away

• Closed form solution: simple formula for getting 
the regression line

• Residual sum of squares is a bad fit for 
classification: very sensitive to outliers

• What’s the natural mapping from categories to 
the real numbers?
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What can we do instead?

• Let’s define an objective (aka “loss”) function 
that directly measures classification quality

• Then find the line that minimizes that loss

• How about basing our loss function on the 
number of misclassifications?
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h x( ) =  1 if g x( ) > 0
−1 otherwise

⎧
⎨
⎪

⎩⎪

SSE = (yi
i

n

∑ − h(xi ))
2

g(x) > 0g(x) < 0

SSE = 16

sum of squared errors (SSE)
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g(x) = w0 +w1x1 +w2x2 = 0
= 𝐰$𝐱



h x( ) =  1 if g x( ) > 0
−1 otherwise

⎧
⎨
⎪

⎩⎪

SSE = (yi
i

n

∑ − h(xi ))
2

g(x) > 0g(x) < 0

SSE = 0

sum of squared errors (SSE)
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g(x) = w0 +w1x1 +w2x2 = 0
= 𝐰$𝐱



No closed form solution!

• For many objective functions we can’t find a formula to 
to get the best model parameters, like we could with 
regression.

• The objective function from the previous slide is one of 
those ”no closed form solution” functions. 

• This means we have to try various guesses for what the 
weights should be and try them out. 

• Let’s look at the perceptron approach.
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Let’s learn a decision boundary

• We’ll do 2-class classification
• We’ll learn a linear decision boundary

0 = 𝑔 𝑥 = 𝐰𝐓𝐱
• Things on each side of 0 get their class labels 

according to the sign of what g(x) outputs.

• We will use the Perceptron algorithm. 
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h x( ) =  1 if g x( ) > 0
−1 otherwise

⎧
⎨
⎪

⎩⎪



The Perceptron

• The “first wave” in neural networks

• A linear classifier



A single perceptron
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Weights define a hyperplane in the 
input space
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Classifies any (linearly separable) 
data
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Different logical functions are 
possible
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And, Or, Not are easy to define
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One perceptron: Only linear decisions

This is XOR.

It can’t learn 
XOR.



Combining perceptrons can make 
any Boolean function
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Defining our goal

𝐷 is our data, consisting of training examples      
< 𝐱, 𝑦 >. Remember y is the true label (drawn 
from {1,-1} and x is the thing being labeled.

Our goal : make (𝐰𝑻𝐱)𝑦 > 0 for all < 𝐱, 𝑦 >∈ 𝐷

Why is this the goal?
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An example

Bryan Pardo and Zach Wood-Doughty, Machine Learning: EECS 349 Fall 2021 30

𝐰 = [𝑤+ , 𝑤-, 𝑤. ] = [−5, 0, 1]10

10

𝑥!

𝑥"

𝑔 𝑥 > 0

𝑔 𝑥 < 0

Goal:  classify     as +1 and     as -1 
by putting a line between them.

(5,7)(2,6)

(𝐰𝑻𝐱)𝑦 > 0
Our objective function is… 

Start with a randomly placed line.

Measure the objective for each point.

Move the line if the objective isn’t met.



An example
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𝐰 = [𝑤+ , 𝑤-, 𝑤. ] = [−5, 0, 1]10

10

𝑥!

𝑥"

𝑔 𝑥 > 0

𝑔 𝑥 < 0

Goal:  classify     as +1 and     as -1 
by putting a line between them.

(5,7)(2,6)

(𝐰𝑻𝐱)𝑦 > 0
Our objective function is… 

Start with a randomly placed line.

(𝐰𝑻𝐱)𝑦 = [−5,0,1]: 1,5,7 (1)
= 2
> 0Objective met. Don’t move the line. 



An example
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𝐰 = [𝑤+ , 𝑤-, 𝑤. ] = [−5, 0, 1]10

10

𝑥!

𝑥"

𝑔 𝑥 > 0

𝑔 𝑥 < 0

Goal:  classify     as +1 and     as -1 
by putting a line between them.

(5,7)(2,6)

(𝐰𝑻𝐱)𝑦 > 0
Our objective function is… 

Start with a randomly placed line.

(𝐰𝑻𝐱)𝑦 = −5,0,1 : 1,2,6 −1
= −5 + 6 −1
= −1
< 0Objective not met. Move the line. 



An example
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𝐰 = [𝑤+ , 𝑤-, 𝑤. ] = [−5, 0, 1]10

10

𝑥!

𝑥"

𝑔 𝑥 > 0

𝑔 𝑥 < 0

Goal:  classify     as +1 and     as -1 
by putting a line between them.

(5,7)(2,6)

(𝐰𝑻𝐱)𝑦 > 0
Our objective function is… 

Start with a randomly placed line.

Let’s update the line by doing𝐰 = 𝐰+ 𝐱(𝑦).

𝐰 = 𝐰+ 𝐱 𝑦 = −5,0,1 + 1,2,6 −1
= [−6,−2,−5]



Now what ?

• What does the decision boundary look like 
when w= [−6,−2,−5] ? Does it 
misclassify the blue dot now?

• What if we update it the same way, each 
time we find a misclassified point? 

• Could this approach be used to find a 
good separation line for a lot of data?
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An example
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𝐰 = [𝑤+ , 𝑤-, 𝑤. ] = [−6,−2,−5]10

10

𝑥!

𝑥"

𝑔 𝑥 > 0

𝑔 𝑥 < 0

Goal:  classify     as +1 and     as -1 
by putting a line between them.

(5,7)(2,6)

(𝐰𝑻𝐱)𝑦 > 0
Our objective function is… 

New line:

𝑔 𝑥 = [𝑤+ , 𝑤-, 𝑤. ]𝑻 [1 , 𝑥-, 𝑥. ] = 0 

0 = −6 − 2𝑥1 − 5𝑥2
−1.2 − .4𝑥1 = 𝑥2



Perceptron Algorithm
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𝐰 = 𝑠𝑜𝑚𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑒𝑡𝑡𝑖𝑛𝑔
Do 
𝑘 = 𝑘 + 1 mod 𝑚
if ℎ 𝐱# ! = 𝑦#
𝐰 = 𝐰+ 𝐱𝑘𝑦

Until ∀𝑘, ℎ 𝐱# = 𝑦#

h x( ) =  1 if g x( ) > 0
−1 otherwise

⎧
⎨
⎪

⎩⎪

0 = 𝑔 𝑥 = 𝐰𝐓𝐱
The decision boundary

The weight update algorithm

The classification function

Warning: Only guaranteed to  
terminate if classes are 
linearly separable!

This means you have to add 
another exit condition for 
when you’ve gone through the 
data too many times and 
suspect you’ll never terminate.

𝑚 = 𝐷 = 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡



Perceptron Algorithm

• Example:

37
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Blue is the negative
class
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Perceptron Algorithm

• Example (cont’d):
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−1 −0.5 0 0.5 1
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Red is the positive
class

Blue is the negative
class
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Perceptron Algorithm

• Example (cont’d):

39

−1 −0.5 0 0.5 1
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−0.5
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Red is the positive
class

Blue is the negative
class
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Perceptron Algorithm

• Example (cont’d):
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−1 −0.5 0 0.5 1
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Red is the positive
class

Blue is the negative
class
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See course website for 
playable animations
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See course website for 
playable animations



Multi-class Classification

43

When there are N classes you 
can classify using N 
discriminant functions.

Choose the class c from the set 
of all classes C whose function 
𝑔<(𝐱) has the maximum output

Geometrically divides feature 
space into N convex decision 
regions

a2
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ℎ 𝐱 = argmax
!∈#

𝑔!(𝐱)



Multi-class Classification
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Remember 𝑔$ 𝐱 is the inner product of the feature vector for the 
example 𝐱 with the weights of the decision boundary hyperplane for 
class c.  If 𝑔$ 𝐱 is getting more positive, that means 𝐱 is deeper 
inside its “yes” region. 

Therefore, if you train a bunch of 2-way classifiers (one for each class) 
and pick the output of the classifier that says the example is deepest in 
its region, you have a multi-class classifier.
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𝑐 = ℎ 𝐱 = argmax
7∈9

𝑔7(𝐱)
A class label

Set of all classes



Pairwise Multi-class Classification

45

If they are not linearly separable (singly connected convex 
regions), may still be pair-wise separable, using N(N-1)/2 linear 
discriminants.

gij
x | wij,wij0( ) = wij0 + wijl

l=1

K

∑ xl

choose  Ci  if 
∀j ≠ i,gij x( ) > 0

a1

a2
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Appendix

(stuff I didn’t have time to discuss in 
class…and for which I haven’t updated the 

notation. )
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Linear Discriminants

• A linear combination of the attributes.

• Easily interpretable

• Are optimal when classes are Gaussian and 
share a covariance matrix

47

g x | w,w0( ) = w0 +
wT x = w0 + wi

i=1

k

∑ ai
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Fisher Linear Discriminant Criteria

• Can think of         as dimensionality reduction from 
K-dimensions to 1

• Objective: 
– Maximize the difference between class means
– Minimize the variance within the classes
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wT x

−2 2 6

−2

0

2

4 J( w) = (m2 −m1)2

s1
2 + s2

2

where si  and mi  are the
sample variance and mean
for class i in the projected
dimension. We want to 
maximize J.



Fisher Linear Discriminant Criteria

• Solution:

where

• However, while this finds finds the direction (  ) of 
decision boundary. Must still solve for      to find the 
threshold.

• Can be expanded to multiple classes
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Logistic Regression (Discrimination)
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Logistic Regression (Discrimination)

• Discriminant model but well-grounded in 
probability

• Flexible assumptions (exponential family class-
conditional densities)

• Differentiable error function (“cross entropy”)

• Works very well when classes are linearly 
separable
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Logistic Regression (Discrimination)

• Probabilistic discriminative model
• Models posterior probability            
• To see this, let’s start with the 2-class formulation:
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p(C1|x) =
p(�!x |C1)p(C1)

p(�!x |C1)p(C1) + p(�!x |C2)p(C2)

=
1

1 + exp

✓
� log

p(�!x |C1)p(C1)

p(�!x |C2)p(C2)

◆

=
1

1 + exp (�↵)

= �(↵)

where

↵ = log
p(�!x |C1)p(C1)

p(�!x |C2)p(C2)

1

logistic sigmoid function



“Squashing function” that maps 

Logistic Regression (Discrimination)
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1logistic sigmoid function



Logistic Regression (Discrimination)
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For exponential family of densities,

is a linear function of x. 

Therefore we can model the posterior probability as a logistic 
sigmoid acting on a linear function of the attribute vector, and 
simply solve for the weight vector w (e.g. treat it as a 
discriminant model):

To classify: 

p(C1|x) =
p(�!x |C1)p(C1)

p(�!x |C1)p(C1) + p(�!x |C2)p(C2)

=
1

1 + exp

✓
� log

p(�!x |C1)p(C1)

p(�!x |C2)p(C2)

◆

=
1

1 + exp (�↵)

= �(↵)

where

↵ = log
p(�!x |C1)p(C1)

p(�!x |C2)p(C2)

1


