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(and Probability Review)
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Axioms of Probability

Let there be a space S .
composed of a countable S = {61, 62,83,....€n}
number of events

The probability of each
event is betwteyen oand1 U< P(e) <1

The probability of the
whole sample space is 1 P(S) =1

When two events are

mutually exclusive, —
t%ﬂr probabilities are P(el v 62) P (el) + P (62)
additive
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Discrete Random Variables

m Probability

0.2
0.4
0.2
0.15
0.05

m O 0O W >

e P(Grade) is a distribution over possible grades
e Each grade is mutually exclusive

e Probabilities sum to 1
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Boolean Random Variable

e Boolean random variable: A random variable
that has only two possible outcomes

e.g.

X = “Tomorrow’s high temperature > 60" has
only two possible outcomes

As a notational convention, P(X) for a Boolean
variable will mean P(X="true"), since it is easy
to infer the rest of the distribution.
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Vizualizing P(A) for a Boolean variable

All Possible Worlds

Worlds where A is True

P(A) =

area of yellow oval

0<P(A)LI1

If a valueis overl
or under 0, 1t 1Sn't
a probability

area of blue rectang’

C
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Visualizing two Booleans

P(Av B) = P(A)+ P(B)— P(AA B)
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Independence

e variables A and B are said to be
/ndependent iff...

P(A)P(B) = P(AA B)
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Bayes Rule

e Definition of
Conditional P(A|B) = A4 B)
Probability P(B)
e Corollary: P(4|B)P(B)=P(4A1B)
The Chain Rule
P(B| A) = P(AAB)
e Bayes Rule P(4)
(Thomas Bayes, 1763) P( A | B) P( B)
P(4)
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Conditional Probability

The conditional probability
of A given B is represented
by the following formula

P(A A B)

‘ P(A|B) = P(B)

Overlap implies NOT independent

Can we do the following?

P(AAB) P(A)P(B)
P(B)  P(B)

Only if A and B are independent

P(A|B) =
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The Joint Distribution

e Truth table lists all A B C Prob
combinations of 0 0 0 0.1
variable assignments o™ [, 1 0.2

* Assign a probability to 1 0 |01
each row

e Probabilities sum to 1 0 L : 0.95

1 0 0 0.05
1 0 1 0.2

1 1 0 0.25
1 1 1 0.05
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Using The Joint Distribution

e Find P(A) A B C Prob
e Sum the probabilities |0 0 0 0.1
of all rows where A=1 | 0 1 0.2
0 1 0 0.1
P(A) = 0.05 + 0.2 0 1 1 0.05
i -(: 0.25 + 0.05 1 0 0 0.05
= 0.55 1 o |1 |02
1 1 0 0.25
1 1 1 0.05
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Using The Joint Distribution

e Find P(A|B) A B |c |prob
o |0 Jo o1
A B
oA B) =2 = ) o |0 |1 o2
p(B) o |1 Jo o1
pB=b)= ), pA=aB=b g4 10 05
ac{0,1}
1 o |o 0.05
= ( ) 1 0 1 0.2
= ( + 1 (1 |o ]o.25
) 1 |1 |1 l0.05
= 0.3 + 0.45

= 0.667
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Using The Joint Distribution

Are A and B Independent? |A B C |Prob
P(A, B) = 0 0 0 0.1
P(A) = + 0.2 + 0.05 0 0 1 0.2
P(B) = + 0 1 0 0.1
0 1 1 0.05
P(A)xP(B) = 0.55 x 0.45
1 1 0 0.25

A and B NOT independent |1 1 1 0.05
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Why not use the Joint Distribution?

e Given /m boolean variables, we need to
estimate 277 values.

e 20 yes-no questions = a million values

e How do we get around this combinatorial
explosion?
— Assume independence of variables!
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...back to independence

e The probability I eat pie today is independent of
the probability of a blizzard in Japan.

e This is DOMAIN knowledge, typically supplied
by the problem designer

e Independence implies:

Al B=p(A|B)=p(4)
ALB|[C=p(4,B|C)=pA|C)p(B|C)
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Let’s show that

assuming independence...
P(AAB)= P(A)P(B)
plus the chain rule...
P(AAB)=P(A|B)P(B)
imply...
P(A)P(B)=P(A|B)P(B)
which means...
P(A|B)=P(A)
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Some Definitions
e Prior probability of h, P(h):

— background knowledge on probability that /A is a correct
hypothesis (before having observed the data)

e Conditional Probability of D, P(D | h):

— the probability of observing data D given that
hypothesis / holds

e Posterior probability of h, P(h|D):
— the probability of, given the observed training data D
— this is what we want!
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Maximum A Posteriori (MAP)

e Goal: To find the most probable hypothesis # from a set
of candidate hypotheses A given the observed data D.

o MAP Hypothesis, hy,p
R, =argmax(P(h| D))

P(D|h)P(h)
P(D)

=argmax(P(D | h)P(h))

heH

= arg max
heH
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Maximum Likelihood (ML)

e ML hypothesis is a special case of the MAP hypothesis
where all hypotheses are, to begin with, equally likely

Py = ar% En;ax(P(D | ) P(h))

Assume...

P(h) = L Vhe H
| H |
Then...

h , =argmax(P(D | h))

heH
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MAP vs Maximum Likelihood

P(cancer) = 0.01
P(positive test | cancer) = 0.97
P(positive test | no cancer) = 0.02

What is p(cancer | positive test)?



Base Rate Fallacy

Total Population= 100 people;
83% vaccination rate

Vaccinated Unvaccinated
000D W
L2 2 2 2 2 2 2 b 2
R T REMEMBER, RIGHT-HANDED
OB T PEOPLE COMMIT 90% OF
BASE RAT :
NI I A ALL RF:EERRORS
LR 2R 2R 2R 2R 2R 28 2R 2 \
50% of infecti =
el L R
yourlocalepidemiologist.substack.com \
xkcd.com/2476/




Linear Regression, Again
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Observed (x, y) is the combination of a point on the regression line plus noise.

W)MAP = arg mgXP(W | X, y)
What is p(X, y | w)? p(W)?
= argmax p(X,y | w)p(w)

https://stackoverflow.com/questions/31794876/ggplot2-how-to-curve-small-gaussian-densities-on-a-regression-line



Linear Regression, Again

p({zi,yi);w) = N(yi; p = w' x;,0 = 0)

N
logp(X,y | w,0) =log | [N(yi;p=w'xs,0 =0)
i=1
N
N 1
=5 log(2mo?) — 952 2(% —w'x;)?
1=
w* = argmaxlogp(w | X,y, o)
= argmax(log p(X,y, | w, o) + log p(w))
N . .

= arg max (—2 log(2mo?) — 252 - (y; — W' x;)° + logp(w))

Zach Wood-Doughty and Bryan Pardo, CS349 Fall 2021



Linear Regression, Again

N
logp(X,y | w,0) =log | [N(yisp = w 'x5,0 = 0)
1=1
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Linear Regression, Again

For linear regression,
minimizing loss and maximizing likelihood are equivalent!

N
1
Ly(X,Y;0) = N > (i — holx:))
i=1
N -
Y log(2m0®) — 52 ;(yz‘ - w'x;)?

But what about that p(w) term?

N
N 1
arg max <—2 log(2mo?) — 552 ;(y@ —w ' x;)% + logp(w)>
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What is p(w) for linear regression?

p(W) — N(07 )‘_1)

w" = argmaxlogp(w | X,y, o)
w

= argmax(log p(X,y, | w, o) + log p(w))

N 1 < N

— arg max (—2 log(2mo?) — — > (y; —w ' x;)% + logp(w)>
w .

=argmax | ...— 1 E:(yZ —w ' x;)% — 1WQ)\Q)
w 202 4 2

La(X,Y30) = L(X,Y;0) + AR(0) Ra(0) = 3" |6if
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Latent Variable Models

max p(Y'|.X;w) Hp Yi| i w
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Expectation Maximization

Given joint distribution p(X, Z | ©),
with X observed and Z latent,
and parameters O,
we want to find a © that maximizes p(X | ©).

First: initialize ©Y. Then, repeat until converged:
1. Estimate p(Z | X, 6"

2. Set 01! = argmax p(Z | X, 0% logp(X, Z | 0)
v,
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EM for Gaussian Mixture Model

(Log) Likelihood of GMM:

N K
(X, Z|p, 3, ) H sz”’“./\/ Xp | g, 25 )°"E
n=1 k=1
N K
Inp(X, 2, E,m) = > Y zup {Inmy + N (x|, Zk) )
n=1 k=1

1. Estimate p(Z | X, 0"

2. Set 017! = argmax p(Z | X, 0% logp(X, Z | 6)
0



Gaussian Mixture Model

1. Estimate p(Z | X, 0"

2. Set 017! = argmax p(Z | X, 0% logp(X, Z | 6)
7

Cluster Responsibilities Cluster means, variances, and
weight coefficients

’Y(zn,k) — K

N
TN (Xn | o X) = ny(zn k)
Zj:l WjN(Xn | Hjs E]) n=1

Ny,
=N

1 N
M — m ;’Y(Zn,k)xn

N
1
D = N, E :’V(Zn,k)(xn — ,uk)(xn — Mk)T
n=1



Expectation Maximization
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Semi-supervised Learning
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Recall: Supervised Learning Tasks

There is a set of possible examples X = {Xl ’ ...Xn}

Each example is a vector of d real valued attributes
Xi — <.’137;,1, .o CEi’d>
A target function maps X onto some real or categorical value Y
f:X->Y
The DATA is a set of tuples <example, response value>

<X,y >,...<X_,y, >}
Find a hypothesis A such that...

VX, h(X) = f(X)



Unsupervised Learning Tasks

There is a set of possible examples
X ={X,..X_}

Each example is a vector of d real valued
attributes X; = <$z',1, N -$z',d>

Assume some latent variable(s) z that correspond

to the observed data
{(x1,21),...{(Xn, 2n)}

Learn a joint distribution of p(X, Z)



Semi-Supervised Learning

\

—— Supervised algorithm decision boundary
——=- Optimal decision boundary

\
\
\
\
\
\
\

https://link.springer.com/content/pdf/10.1007/s10994-019-05855-6.pdf



Semi-Supervised Learning
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Animation on Course Website!


Semi-Supervised Learning
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Bonus Math: EM in General

lllustration of the decomposition given X X
by (9.70), which holds for any choice

of distribution ¢(Z). Because the KL
Kullback-Leibler divergence satisfies (allp)
KL(q|lp) = 0, we see that the quan-

tity £(q, 0) is a lower bound on the log ¥
likelihood function In p(X|8). ¥
L(q,0) In p(X|[6)
Inp(X][0) = L(q, 0) + KL(q||p)

L(q,0)

21 { X<zz>‘9)}
KL@lp) = -3 (@ { Z'é)é’)}

Pattern Recognition and Machine Learning: http://www.rmki.kfki.hu/~banmi/elte/bishop_em.pdf



http://www.rmki.kfki.hu/~banmi/elte/bishop_em.pdf

EM: Pictorial View
L(gllp) = —Zq { %]FZ()H)}

lllustration of the E step of KL (q||p) =0 A A
the EM algorithm. The ¢
distribution is set equal to
the posterior distribution for
the current parameter val-
ues 0°'9, causing the lower
bound to move up to the —_—— -]
same value as the log like-
lihood function, with the KL old old
divergence vanishing. L(q,0°%) Inp(X|6°7)

L(g,0) = > p(Z|X,0°)Inp(X,Z|6) — Y p(Z|X,6°") Inp(Z|X,0)

= Q(0,0°) + const (9.74)

Pattern Recognition and Machine Learning. http://www.rmki.kfki.hu/~banmi/elte/bishop_em.pdf
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EM: Pictorial View

lllustration of the M step of the EM

algorithm.  The distribution ¢(Z) KL(qu)I
is held fixed and the lower bound x
L(q,0) is maximized with respect I_

to the parameter vector 6 to give —_—_—— e —— =t = = -
a revised value 6"". Because the
KL divergence is nonnegative, this
causes the log likelihood Inp(X|6)
to increase by at least as much as
the lower bound does.

E(q) HDGW) lnp(XygneW)

Pattern Recognition and Machine Learning: http://www.rmki.kfki.hu/~banmi/elte/bishop_em.pdf
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EM: Pictorial View

HOId enew

log p(X0) =|L(g6)+ KL(q| p

Increases Can only increase

log p(X|0) =log p(X|0°%)

Pattern Recognition and Machine Learning: http://www.rmki.kfki.hu/~banmi/elte/bishop_em.pdf
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