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Machine Learning

Expectation Maximization
(and Probability Review)
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Axioms of Probability
• Let there be a space S 

composed of a countable 
number of events 

• The probability of each 
event is between 0 and 1

• The probability of the 
whole sample space is 1

• When two events are 
mutually exclusive, 
their probabilities are 
additive   
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Discrete Random Variables

Zach Wood-Doughty and Bryan Pardo, CS349 Fall 2021

Grade Probability

A 0.2
B 0.4
C 0.2
D 0.15
F 0.05

• P(Grade) is a distribution over possible grades

• Each grade is mutually exclusive

• Probabilities sum to 1



Boolean Random Variable

• Boolean random variable: A random variable 
that has only two possible outcomes
e.g.

X = “Tomorrow’s high temperature > 60” has   
only two possible outcomes

As a notational convention, P(X) for a Boolean 
variable will mean P(X=“true”), since it is easy 
to infer the rest of the distribution.
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Vizualizing P(A) for a Boolean variable
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Visualizing two Booleans
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Independence

• variables A and B are said to be 
independent iff…
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Bayes Rule

• Definition of 
Conditional  
Probability 

• Corollary: 
The Chain Rule

• Bayes Rule 
(Thomas Bayes, 1763)
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Conditional Probability

rectangle blue of area
oval yellow of area)( =AP

)(
)()|(

BP
BAPBAP Ù

=

A
B

Can we do the following?
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Only if A and B are independent

The conditional probability 
of A given B is represented 
by the following formula

Overlap implies NOT independent
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The Joint Distribution

• Truth table lists all 
combinations of 
variable assignments

• Assign a probability to 
each row

• Probabilities sum to 1

A B C Prob
0 0 0 0.1
0 0 1 0.2
0 1 0 0.1
0 1 1 0.05
1 0 0 0.05
1 0 1 0.2
1 1 0 0.25
1 1 1 0.05
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Using The Joint Distribution

• Find P(A)
• Sum the probabilities 

of all rows where A=1

P(A) = 0.05 + 0.2
+ 0.25 + 0.05

= 0.55

A B C Prob
0 0 0 0.1
0 0 1 0.2
0 1 0 0.1
0 1 1 0.05
1 0 0 0.05
1 0 1 0.2
1 1 0 0.25
1 1 1 0.05
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Using The Joint Distribution

• Find P(A|B)

= (0.25+0.05)
÷ (0.25+0.05 + 

0.1+0.05)
= 0.3 ÷ 0.45
= 0.667

A B C Prob
0 0 0 0.1
0 0 1 0.2
0 1 0 0.1
0 1 1 0.05
1 0 0 0.05
1 0 1 0.2
1 1 0 0.25
1 1 1 0.05

1 Conditional Probability

p(A | B) =
p(A,B)

p(B)

1

1 Conditional Probability

p(A | B) =
p(A,B)

p(B)

p(B = b) =
X

a2{0,1}

p(A = a,B = b)

A ? B ) p(A | B) = p(A)

A ? B | C ) p(A,B | C) = p(A | C)p(B | C)

p(C | T ) = p(T | C)p(C)

p(T )

=
0.97 · 0.01

p(T )

p(T ) = p(T | C)p(C) + p(T | ¬C)p(¬C)

= 0.97 · 0.01 + 0.02 · 0.99

p(C | T ) = 0.97 · 0.01
0.97 · 0.01 + 0.02 · 0.99

=
0.0097

0.0097 + 0.0198
⇡ 0.33%

2 Maximum Likelihood for Linear Regression

wMAP = argmax
w

p(w | X,y)

= argmax
w

p(X,y | w)p(w)

p(hxi, yii;w) = N (yi;µ = w>xi,� = �)

log p(X,y | w,�) = log
NY

i=1

N (yi;µ = w>xi,� = �)

= �N

2
log(2⇡�2)� 1

2�2

NX

i=1

(yi �w>xi)
2

1



A B C Prob
0 0 0 0.1
0 0 1 0.2
0 1 0 0.1
0 1 1 0.05
1 0 0 0.05
1 0 1 0.2
1 1 0 0.25
1 1 1 0.05
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Using The Joint Distribution

Are A and B Independent?
P(A, B) = 0.25 + 0.05
P(A) = 0.3 + 0.2 + 0.05
P(B) = 0.3 + 0.1 + 0.05

P(A)×P(B) = 0.55 × 0.45
P(A, B) = 0.3 ≠ 0.248

A and B NOT independent
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Why not use the Joint Distribution?

• Given m boolean variables, we need to 
estimate  2m values.

• 20 yes-no questions = a million values

• How do we get around this combinatorial 
explosion?  
– Assume independence of variables!
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…back to independence

• The probability I eat pie today is independent of 
the probability of a blizzard in Japan.

• This is DOMAIN knowledge, typically supplied 
by the problem designer

• Independence implies:
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Let’s show that
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Some Definitions
• Prior probability of h, P(h):

– background knowledge on probability that h is a correct 
hypothesis (before having observed the data)

• Conditional Probability of D, P(D|h):
– the probability of observing data D given that 

hypothesis h holds

• Posterior probability of h, P(h|D):
– the probability of, given the observed training data D
– this is what we want!
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Maximum A Posteriori (MAP) 
• Goal: To find the most probable hypothesis h from a set 

of candidate hypotheses H given the observed data D.
• MAP Hypothesis, hMAP
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Maximum Likelihood (ML) 
• ML hypothesis is a special case of the MAP hypothesis 

where all hypotheses are, to begin with, equally likely 
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MAP vs Maximum Likelihood
P(cancer) = 0.01
P(positive test | cancer) = 0.97
P(positive test | no cancer) = 0.02

What is p(cancer | positive test)?

1 Conditional Probability

p(A | B) =
p(A,B)

p(B)

A ? B ) p(A | B) = p(A)

A ? B | C ) p(A,B | C) = p(A | C)p(B | C)

p(C | T )
0.97 · . . · 0.99

=
0.0097

0.0097 + 0.0198
⇡ 0.33%

1

1 Conditional Probability

p(A | B) =
p(A,B)

p(B)

A ? B ) p(A | B) = p(A)

A ? B | C ) p(A,B | C) = p(A | C)p(B | C)

p(C | T ) = p(T | C)p(C)

p(T )

=
0.97 · 0.01

p(T )

1

1 Conditional Probability

p(A | B) =
p(A,B)

p(B)

A ? B ) p(A | B) = p(A)

A ? B | C ) p(A,B | C) = p(A | C)p(B | C)

p(C | T ) = p(T | C)p(C)

p(T )
0.97 · 0.01

1

1 Conditional Probability

p(A | B) =
p(A,B)

p(B)

A ? B ) p(A | B) = p(A)

A ? B | C ) p(A,B | C) = p(A | C)p(B | C)

p(C | T ) = p(T | C)p(C)

p(T )
0.97 · 0.01

1
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Base Rate Fallacy

xkcd.com/2476/



Linear Regression, Again

https://stackoverflow.com/questions/31794876/ggplot2-how-to-curve-small-gaussian-densities-on-a-regression-line

Observed (x, y) is the combination of a point on the regression line plus noise. 

1 Conditional Probability

p(A | B) =
p(A,B)

p(B)

A ? B ) p(A | B) = p(A)

A ? B | C ) p(A,B | C) = p(A | C)p(B | C)

p(C | T ) = p(T | C)p(C)

p(T )

=
0.97 · 0.01

p(T )

p(T ) = p(T | C)p(C) + p(T | ¬C)p(¬C)

= 0.97 · 0.01 + 0.02 · 0.99

p(C | T ) = 0.97 · 0.01
0.97 · 0.01 + 0.02 · 0.99

=
0.0097

0.0097 + 0.0198
⇡ 0.33%

2 Maximum Likelihood for Linear Regression

wMAP = argmax
w

p(w | X,y)

= argmax
w

p(X,y | w)p(w)

p(hxi, yii;w) = N (yi;µ = w>xi,� = �)

log p(X,y | w,�) = log
NY

i=1

N (yi;µ = w>xi,� = �)

= �N

2
log(2⇡�2)� 1

2�2

NX

i=1

(yi �w>xi)
2

1

What is p(X, y | w)? p(W)?



Linear Regression, Again
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1 Conditional Probability

p(A | B) =
p(A,B)

p(B)

A ? B ) p(A | B) = p(A)

A ? B | C ) p(A,B | C) = p(A | C)p(B | C)

p(C | T ) = p(T | C)p(C)

p(T )

=
0.97 · 0.01

p(T )

p(T ) = p(T | C)p(C) + p(T | ¬C)p(¬C)

= 0.97 · 0.01 + 0.02 · 0.99

p(C | T ) = 0.97 · 0.01
0.97 · 0.01 + 0.02 · 0.99

=
0.0097

0.0097 + 0.0198
⇡ 0.33%

2 Maximum Likelihood for Linear Regression

log p(X,y | w,�) = log
NY

i=1

N (yi;µ = w>xi,� = �)

= �N

2
log(2⇡�2)� 1

2�2

NX

i=1

(yi �w>xi)
2

1

1 Conditional Probability

p(A | B) =
p(A,B)

p(B)

A ? B ) p(A | B) = p(A)

A ? B | C ) p(A,B | C) = p(A | C)p(B | C)

p(C | T ) = p(T | C)p(C)

p(T )

=
0.97 · 0.01

p(T )

p(T ) = p(T | C)p(C) + p(T | ¬C)p(¬C)

= 0.97 · 0.01 + 0.02 · 0.99

p(C | T ) = 0.97 · 0.01
0.97 · 0.01 + 0.02 · 0.99

=
0.0097

0.0097 + 0.0198
⇡ 0.33%

2 Maximum Likelihood for Linear Regression

wMAP = argmax
w

p(w | X,y)

= argmax
w

p(X,y | w)p(w)

p(hxi, yii;w) = N (yi;µ = w>xi,� = �)

log p(X,y | w,�) = log
NY

i=1

N (yi;µ = w>xi,� = �)

= �N

2
log(2⇡�2)� 1

2�2

NX

i=1

(yi �w>xi)
2

1

w⇤ = argmax
w

log p(w | X,y,�)

= argmax
w

(log p(X,y, | w,�) + log p(w))

= argmax
w

 
�N

2
log(2⇡�2)� 1

2�2

NX

i=1

(yi �w>xi)
2 + log p(w)

!

p(w) = N (0,��1)

w⇤ = (�Id +X>X)�1Xy

2



Linear Regression, Again
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1 Conditional Probability

p(A | B) =
p(A,B)

p(B)

A ? B ) p(A | B) = p(A)

A ? B | C ) p(A,B | C) = p(A | C)p(B | C)

p(C | T ) = p(T | C)p(C)

p(T )

=
0.97 · 0.01

p(T )

p(T ) = p(T | C)p(C) + p(T | ¬C)p(¬C)

= 0.97 · 0.01 + 0.02 · 0.99

p(C | T ) = 0.97 · 0.01
0.97 · 0.01 + 0.02 · 0.99

=
0.0097

0.0097 + 0.0198
⇡ 0.33%

2 Maximum Likelihood for Linear Regression

log p(X,y | w,�) = log
NY

i=1

N (yi;µ = w>xi,� = �)

= �N

2
log(2⇡�2)� 1

2�2

NX

i=1

(yi �w>xi)
2

1

w⇤ = argmax
w

log p(w | X,y,�)

= argmax
w

(log p(X,y, | w,�) + log p(w))

= argmax
w

 
�N

2
log(2⇡�2)� 1

2�2

NX

i=1

(yi �w>xi)
2 + log p(w)

!

0 =
d

dw

 
�1

2
��2

NX

i=1

(yi �w>xi)
2

!

=

 
NX

i=1

yix
>
i

!
�w>

NX

i=1

xix
>
i

= X>y �w>X>X

= . . . = w � (X>X)�1X>y

p(w) = N (0,��1)

w⇤ = (�Id +X>X)�1Xy

2



Linear Regression, Again
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1 Conditional Probability

p(A | B) =
p(A,B)

p(B)

A ? B ) p(A | B) = p(A)

A ? B | C ) p(A,B | C) = p(A | C)p(B | C)

p(C | T ) = p(T | C)p(C)

p(T )

=
0.97 · 0.01

p(T )

p(T ) = p(T | C)p(C) + p(T | ¬C)p(¬C)

= 0.97 · 0.01 + 0.02 · 0.99

p(C | T ) = 0.97 · 0.01
0.97 · 0.01 + 0.02 · 0.99

=
0.0097

0.0097 + 0.0198
⇡ 0.33%

2 Maximum Likelihood for Linear Regression

log p(X,y | w,�) = log
NY

i=1

N (yi;µ = w>xi,� = �)

= �N

2
log(2⇡�2)� 1

2�2

NX

i=1

(yi �w>xi)
2

1

For linear regression,
minimizing loss and maximizing likelihood are equivalent!

w⇤ = argmax
w

log p(w | X,y,�)

= argmax
w

(log p(X,y, | w,�) + log p(w))

= argmax
w

 
�N

2
log(2⇡�2)� 1

2�2

NX

i=1

(yi �w>xi)
2 + log p(w)

!

p(w) = N (0,��1)

w⇤ = (�Id +X>X)�1Xy

2

But what about that p(w) term?



What is p(w) for linear regression?
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p(w) = N (0,��1)

w⇤ = (�Id +X>X)�1Xy

2

w⇤ = argmax
w

log p(w | X,y,�)

= argmax
w

(log p(X,y, | w,�) + log p(w))

= argmax
w

 
�N

2
log(2⇡�2)� 1

2�2

NX

i=1

(yi �w>xi)
2 + log p(w)

!

p(w) = N (0,��1)

w⇤ = (�Id +X>X)�1Xy

2

w⇤ = argmax
w

log p(w | X,y,�)

= argmax
w

(log p(X,y, | w,�) + log p(w))

= argmax
w

 
�N

2
log(2⇡�2)� 1

2�2

NX

i=1

(yi �w>xi)
2 + log p(w)

!

0 =
d

dw

 
�1

2
��2

NX

i=1

(yi �w>xi)
2

!

=

 
NX

i=1

yix
>
i

!
�w>

NX

i=1

xix
>
i

= X>y �w>X>X

= . . . = w � (X>X)�1X>y

p(w) = N (0,��1)

) argmax
w

 
. . .� 1

2�2

NX

i=1

(yi �w>xi)
2 � 1

2
w2�2)

!

2



Latent Variable Models
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Expectation Maximization

Given joint distribution p(X, Z | Θ),
with X observed and Z latent,
and parameters Θ,
we want to find a Θ that maximizes p(X | Θ).

First: initialize Θ0. Then, repeat until converged:

Zach Wood-Doughty and Bryan Pardo, CS349 Fall 2021

3 Maximum Likelihood for Linear Regression

wMAP = argmax
w

p(w | X,y)

= argmax
w

p(X,y | w)p(w)

p(hxi, yii;w) = N (yi;µ = w>xi,� = �)

log p(X,y | w,�) = log
NY

i=1

N (yi;µ = w>xi,� = �)

= �N

2
log(2⇡�2)� 1

2�2

NX

i=1

(yi �w>xi)
2

w⇤ = argmax
w

log p(w | X,y,�)

= argmax
w

(log p(X,y, | w,�) + log p(w))

= argmax
w

 
�N

2
log(2⇡�2)� 1

2�2

NX

i=1

(yi �w>xi)
2 + log p(w)

!

0 =
d

dw

 
�1

2
��2

NX

i=1

(yi �w>xi)
2

!

=

 
NX

i=1

yix
>
i

!
�w>

NX

i=1

xix
>
i

= X>y �w>X>X

= . . . = w � (X>X)�1X>y

p(w) = N (0,��1)

) argmax
w

 
. . .� 1

2�2

NX

i=1

(yi �w>xi)
2 � 1

2
w2�2)

!

1. Estimate p(Z | X, ✓t)

2. Set ✓t+1 = argmax
✓̂

p(Z | X, ✓t) log p(X,Z | ✓̂)

2



EM for Gaussian Mixture Model

(Log) Likelihood of GMM:

442 9. MIXTURE MODELS AND EM

Figure 9.9 This shows the same graph as in Figure 9.6 except that
we now suppose that the discrete variables zn are ob-
served, as well as the data variables xn.

xn

zn

N

µ Σ

π

Now consider the problem of maximizing the likelihood for the complete data
set {X,Z}. From (9.10) and (9.11), this likelihood function takes the form

p(X,Z|µ,Σ, π) =
N∏

n=1

K∏

k=1

πznk
k N (xn|µk,Σk)znk (9.35)

where znk denotes the kth component of zn. Taking the logarithm, we obtain

ln p(X,Z|µ,Σ, π) =
N∑

n=1

K∑

k=1

znk {lnπk + lnN (xn|µk,Σk)} . (9.36)

Comparison with the log likelihood function (9.14) for the incomplete data shows
that the summation over k and the logarithm have been interchanged. The loga-
rithm now acts directly on the Gaussian distribution, which itself is a member of
the exponential family. Not surprisingly, this leads to a much simpler solution to
the maximum likelihood problem, as we now show. Consider first the maximization
with respect to the means and covariances. Because zn is a K-dimensional vec-
tor with all elements equal to 0 except for a single element having the value 1, the
complete-data log likelihood function is simply a sum of K independent contribu-
tions, one for each mixture component. Thus the maximization with respect to a
mean or a covariance is exactly as for a single Gaussian, except that it involves only
the subset of data points that are ‘assigned’ to that component. For the maximization
with respect to the mixing coefficients, we note that these are coupled for different
values of k by virtue of the summation constraint (9.9). Again, this can be enforced
using a Lagrange multiplier as before, and leads to the result

πk =
1
N

N∑

n=1

znk (9.37)

so that the mixing coefficients are equal to the fractions of data points assigned to
the corresponding components.

Thus we see that the complete-data log likelihood function can be maximized
trivially in closed form. In practice, however, we do not have values for the latent
variables so, as discussed earlier, we consider the expectation, with respect to the
posterior distribution of the latent variables, of the complete-data log likelihood.

3 Maximum Likelihood for Linear Regression

wMAP = argmax
w

p(w | X,y)

= argmax
w

p(X,y | w)p(w)

p(hxi, yii;w) = N (yi;µ = w>xi,� = �)

log p(X,y | w,�) = log
NY

i=1

N (yi;µ = w>xi,� = �)

= �N

2
log(2⇡�2)� 1

2�2

NX

i=1

(yi �w>xi)
2

w⇤ = argmax
w

log p(w | X,y,�)

= argmax
w

(log p(X,y, | w,�) + log p(w))

= argmax
w

 
�N

2
log(2⇡�2)� 1

2�2

NX

i=1

(yi �w>xi)
2 + log p(w)

!
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NX

i=1

yix
>
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NX

i=1

xix
>
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= X>y �w>X>X

= . . . = w � (X>X)�1X>y

p(w) = N (0,��1)

) argmax
w
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1. Estimate p(Z | X, ✓t)

2. Set ✓t+1 = argmax
✓̂

p(Z | X, ✓t) log p(X,Z | ✓̂)

2
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Figure 9.9 This shows the same graph as in Figure 9.6 except that
we now suppose that the discrete variables zn are ob-
served, as well as the data variables xn.
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Now consider the problem of maximizing the likelihood for the complete data
set {X,Z}. From (9.10) and (9.11), this likelihood function takes the form

p(X,Z|µ,Σ, π) =
N∏

n=1
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πznk
k N (xn|µk,Σk)znk (9.35)

where znk denotes the kth component of zn. Taking the logarithm, we obtain
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znk {lnπk + lnN (xn|µk,Σk)} . (9.36)

Comparison with the log likelihood function (9.14) for the incomplete data shows
that the summation over k and the logarithm have been interchanged. The loga-
rithm now acts directly on the Gaussian distribution, which itself is a member of
the exponential family. Not surprisingly, this leads to a much simpler solution to
the maximum likelihood problem, as we now show. Consider first the maximization
with respect to the means and covariances. Because zn is a K-dimensional vec-
tor with all elements equal to 0 except for a single element having the value 1, the
complete-data log likelihood function is simply a sum of K independent contribu-
tions, one for each mixture component. Thus the maximization with respect to a
mean or a covariance is exactly as for a single Gaussian, except that it involves only
the subset of data points that are ‘assigned’ to that component. For the maximization
with respect to the mixing coefficients, we note that these are coupled for different
values of k by virtue of the summation constraint (9.9). Again, this can be enforced
using a Lagrange multiplier as before, and leads to the result

πk =
1
N

N∑

n=1

znk (9.37)

so that the mixing coefficients are equal to the fractions of data points assigned to
the corresponding components.

Thus we see that the complete-data log likelihood function can be maximized
trivially in closed form. In practice, however, we do not have values for the latent
variables so, as discussed earlier, we consider the expectation, with respect to the
posterior distribution of the latent variables, of the complete-data log likelihood.
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Figure 9.8 Illustration of the EM algorithm using the Old Faithful set as used for the illustration of the K-means
algorithm in Figure 9.1. See the text for details.

and the M step, for reasons that will become apparent shortly. In the expectation
step, or E step, we use the current values for the parameters to evaluate the posterior
probabilities, or responsibilities, given by (9.13). We then use these probabilities in
the maximization step, or M step, to re-estimate the means, covariances, and mix-
ing coefficients using the results (9.17), (9.19), and (9.22). Note that in so doing
we first evaluate the new means using (9.17) and then use these new values to find
the covariances using (9.19), in keeping with the corresponding result for a single
Gaussian distribution. We shall show that each update to the parameters resulting
from an E step followed by an M step is guaranteed to increase the log likelihood
function. In practice, the algorithm is deemed to have converged when the changeSection 9.4
in the log likelihood function, or alternatively in the parameters, falls below some
threshold. We illustrate the EM algorithm for a mixture of two Gaussians applied to
the rescaled Old Faithful data set in Figure 9.8. Here a mixture of two Gaussians
is used, with centres initialized using the same values as for the K-means algorithm
in Figure 9.1, and with precision matrices initialized to be proportional to the unit
matrix. Plot (a) shows the data points in green, together with the initial configura-
tion of the mixture model in which the one standard-deviation contours for the two
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Fig. 1 A basic example of binary classification in the presence of unlabelled data. The unlabelled data points
are coloured according to their true label. The coloured, unfilled circles depict the contour curves of the input
data distribution corresponding to standard deviations of 1, 2 and 3 (Color figure online)

about particle accelerators that does not contain the word “neutron”, the classifier is unable
to recognize it as a document concerning physics. This is where semi-supervised learning
comes in. If we consider the unlabelled data, there might be documents that connect the word
“neutron” to the phrase “particle accelerator”. For instance, the word “neutron” would often
occur in a document that also contains the word “quark”. Furthermore, the word “quark”
would regularly co-occur with the phrase “particle accelerator”, which guides the classifiers
towards classifying these documents as revolving around physics as well, despite having
never seen the phrase “particle accelerator” in the labelled data.

Figure 1 provides some further intuition towards the use of unlabelled data for classifi-
cation. We consider an artificial classification problem with two classes. For both classes,
100 samples are drawn from a 2-dimensional Gaussian distribution with identical covariance
matrices. The labelled data set is then constructed by taking one sample from each class.
Any supervised learning algorithm will most likely obtain as the decision boundary the solid
line, which is perpendicular to the line segment connecting the two labelled data points and
intersects it in the middle. However, this is quite far from the optimal decision boundary.
As is clear from this figure, the clusters we can infer from the unlabelled data can help us
considerably in placing the decision boundary: assuming that the data stems from two Gaus-
sian distributions, a simple semi-supervised learning algorithm can infer a close-to-optimal
decision boundary.

2.1 Assumptions of semi-supervised learning

A necessary condition of semi-supervised learning is that the underlyingmarginal data distri-
bution p(x) over the input space contains information about the posterior distribution p(y|x).
If this is the case, onemight be able to use unlabelled data to gain information about p(x), and
thereby about p(y|x). If, on the other hand, this condition is not met, and p(x) contains no
information about p(y|x), it is inherently impossible to improve the accuracy of predictions
based on the additional unlabelled data (Zhu 2008).
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Bonus Math: EM in General

450 9. MIXTURE MODELS AND EM

αnew
i =

1
m2

i + Σii
(9.67)

(βnew)−1 =
‖t − ΦmN‖2 + β−1

∑
i γi

N
(9.68)

These re-estimation equations are formally equivalent to those obtained by direct
maxmization.Exercise 9.23

9.4. The EM Algorithm in General

The expectation maximization algorithm, or EM algorithm, is a general technique for
finding maximum likelihood solutions for probabilistic models having latent vari-
ables (Dempster et al., 1977; McLachlan and Krishnan, 1997). Here we give a very
general treatment of the EM algorithm and in the process provide a proof that the
EM algorithm derived heuristically in Sections 9.2 and 9.3 for Gaussian mixtures
does indeed maximize the likelihood function (Csiszàr and Tusnàdy, 1984; Hath-
away, 1986; Neal and Hinton, 1999). Our discussion will also form the basis for the
derivation of the variational inference framework.Section 10.1

Consider a probabilistic model in which we collectively denote all of the ob-
served variables by X and all of the hidden variables by Z. The joint distribution
p(X,Z|θ) is governed by a set of parameters denoted θ. Our goal is to maximize
the likelihood function that is given by

p(X|θ) =
∑

Z

p(X,Z|θ). (9.69)

Here we are assuming Z is discrete, although the discussion is identical if Z com-
prises continuous variables or a combination of discrete and continuous variables,
with summation replaced by integration as appropriate.

We shall suppose that direct optimization of p(X|θ) is difficult, but that opti-
mization of the complete-data likelihood function p(X,Z|θ) is significantly easier.
Next we introduce a distribution q(Z) defined over the latent variables, and we ob-
serve that, for any choice of q(Z), the following decomposition holds

ln p(X|θ) = L(q, θ) + KL(q‖p) (9.70)

where we have defined

L(q, θ) =
∑

Z

q(Z) ln
{

p(X,Z|θ)
q(Z)

}
(9.71)

KL(q‖p) = −
∑

Z

q(Z) ln
{

p(Z|X, θ)
q(Z)

}
. (9.72)

Note that L(q, θ) is a functional (see Appendix D for a discussion of functionals)
of the distribution q(Z), and a function of the parameters θ. It is worth studying
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finding maximum likelihood solutions for probabilistic models having latent vari-
ables (Dempster et al., 1977; McLachlan and Krishnan, 1997). Here we give a very
general treatment of the EM algorithm and in the process provide a proof that the
EM algorithm derived heuristically in Sections 9.2 and 9.3 for Gaussian mixtures
does indeed maximize the likelihood function (Csiszàr and Tusnàdy, 1984; Hath-
away, 1986; Neal and Hinton, 1999). Our discussion will also form the basis for the
derivation of the variational inference framework.Section 10.1

Consider a probabilistic model in which we collectively denote all of the ob-
served variables by X and all of the hidden variables by Z. The joint distribution
p(X,Z|θ) is governed by a set of parameters denoted θ. Our goal is to maximize
the likelihood function that is given by

p(X|θ) =
∑

Z

p(X,Z|θ). (9.69)

Here we are assuming Z is discrete, although the discussion is identical if Z com-
prises continuous variables or a combination of discrete and continuous variables,
with summation replaced by integration as appropriate.

We shall suppose that direct optimization of p(X|θ) is difficult, but that opti-
mization of the complete-data likelihood function p(X,Z|θ) is significantly easier.
Next we introduce a distribution q(Z) defined over the latent variables, and we ob-
serve that, for any choice of q(Z), the following decomposition holds

ln p(X|θ) = L(q, θ) + KL(q‖p) (9.70)

where we have defined

L(q, θ) =
∑

Z

q(Z) ln
{

p(X,Z|θ)
q(Z)

}
(9.71)

KL(q‖p) = −
∑

Z

q(Z) ln
{

p(Z|X, θ)
q(Z)

}
. (9.72)

Note that L(q, θ) is a functional (see Appendix D for a discussion of functionals)
of the distribution q(Z), and a function of the parameters θ. It is worth studying
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Figure 9.11 Illustration of the decomposition given
by (9.70), which holds for any choice
of distribution q(Z). Because the
Kullback-Leibler divergence satisfies
KL(q‖p) ! 0, we see that the quan-
tity L(q, θ) is a lower bound on the log
likelihood function ln p(X|θ).

ln p(X|θ)L(q, θ)

KL(q||p)

carefully the forms of the expressions (9.71) and (9.72), and in particular noting that
they differ in sign and also that L(q, θ) contains the joint distribution of X and Z
while KL(q‖p) contains the conditional distribution of Z given X. To verify the
decomposition (9.70), we first make use of the product rule of probability to giveExercise 9.24

ln p(X,Z|θ) = ln p(Z|X, θ) + ln p(X|θ) (9.73)

which we then substitute into the expression for L(q, θ). This gives rise to two terms,
one of which cancels KL(q‖p) while the other gives the required log likelihood
ln p(X|θ) after noting that q(Z) is a normalized distribution that sums to 1.

From (9.72), we see that KL(q‖p) is the Kullback-Leibler divergence between
q(Z) and the posterior distribution p(Z|X, θ). Recall that the Kullback-Leibler di-
vergence satisfies KL(q‖p) ! 0, with equality if, and only if, q(Z) = p(Z|X, θ). ItSection 1.6.1
therefore follows from (9.70) that L(q, θ) " ln p(X|θ), in other words that L(q, θ)
is a lower bound on ln p(X|θ). The decomposition (9.70) is illustrated in Fig-
ure 9.11.

The EM algorithm is a two-stage iterative optimization technique for finding
maximum likelihood solutions. We can use the decomposition (9.70) to define the
EM algorithm and to demonstrate that it does indeed maximize the log likelihood.
Suppose that the current value of the parameter vector is θold. In the E step, the
lower bound L(q, θold) is maximized with respect to q(Z) while holding θold fixed.
The solution to this maximization problem is easily seen by noting that the value
of ln p(X|θold) does not depend on q(Z) and so the largest value of L(q, θold) will
occur when the Kullback-Leibler divergence vanishes, in other words when q(Z) is
equal to the posterior distribution p(Z|X, θold). In this case, the lower bound will
equal the log likelihood, as illustrated in Figure 9.12.

In the subsequent M step, the distribution q(Z) is held fixed and the lower bound
L(q, θ) is maximized with respect to θ to give some new value θnew. This will
cause the lower bound L to increase (unless it is already at a maximum), which will
necessarily cause the corresponding log likelihood function to increase. Because the
distribution q is determined using the old parameter values rather than the new values
and is held fixed during the M step, it will not equal the new posterior distribution
p(Z|X, θnew), and hence there will be a nonzero KL divergence. The increase in the
log likelihood function is therefore greater than the increase in the lower bound, as

Pattern Recognition and Machine Learning: http://www.rmki.kfki.hu/~banmi/elte/bishop_em.pdf 

http://www.rmki.kfki.hu/~banmi/elte/bishop_em.pdf


EM: Pictorial View
452 9. MIXTURE MODELS AND EM

Figure 9.12 Illustration of the E step of
the EM algorithm. The q
distribution is set equal to
the posterior distribution for
the current parameter val-
ues θold, causing the lower
bound to move up to the
same value as the log like-
lihood function, with the KL
divergence vanishing. ln p(X|θold)L(q, θold)

KL(q||p) = 0

shown in Figure 9.13. If we substitute q(Z) = p(Z|X, θold) into (9.71), we see that,
after the E step, the lower bound takes the form

L(q, θ) =
∑

Z

p(Z|X, θold) ln p(X,Z|θ) −
∑

Z

p(Z|X, θold) ln p(Z|X, θold)

= Q(θ, θold) + const (9.74)

where the constant is simply the negative entropy of the q distribution and is there-
fore independent of θ. Thus in the M step, the quantity that is being maximized is the
expectation of the complete-data log likelihood, as we saw earlier in the case of mix-
tures of Gaussians. Note that the variable θ over which we are optimizing appears
only inside the logarithm. If the joint distribution p(Z,X|θ) comprises a member of
the exponential family, or a product of such members, then we see that the logarithm
will cancel the exponential and lead to an M step that will be typically much simpler
than the maximization of the corresponding incomplete-data log likelihood function
p(X|θ).

The operation of the EM algorithm can also be viewed in the space of parame-
ters, as illustrated schematically in Figure 9.14. Here the red curve depicts the (in-

Figure 9.13 Illustration of the M step of the EM
algorithm. The distribution q(Z)
is held fixed and the lower bound
L(q, θ) is maximized with respect
to the parameter vector θ to give
a revised value θnew. Because the
KL divergence is nonnegative, this
causes the log likelihood ln p(X|θ)
to increase by at least as much as
the lower bound does.

ln p(X|θnew)L(q, θnew)

KL(q||p)
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αnew
i =

1
m2

i + Σii
(9.67)

(βnew)−1 =
‖t − ΦmN‖2 + β−1

∑
i γi

N
(9.68)

These re-estimation equations are formally equivalent to those obtained by direct
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9.4. The EM Algorithm in General

The expectation maximization algorithm, or EM algorithm, is a general technique for
finding maximum likelihood solutions for probabilistic models having latent vari-
ables (Dempster et al., 1977; McLachlan and Krishnan, 1997). Here we give a very
general treatment of the EM algorithm and in the process provide a proof that the
EM algorithm derived heuristically in Sections 9.2 and 9.3 for Gaussian mixtures
does indeed maximize the likelihood function (Csiszàr and Tusnàdy, 1984; Hath-
away, 1986; Neal and Hinton, 1999). Our discussion will also form the basis for the
derivation of the variational inference framework.Section 10.1

Consider a probabilistic model in which we collectively denote all of the ob-
served variables by X and all of the hidden variables by Z. The joint distribution
p(X,Z|θ) is governed by a set of parameters denoted θ. Our goal is to maximize
the likelihood function that is given by

p(X|θ) =
∑

Z

p(X,Z|θ). (9.69)

Here we are assuming Z is discrete, although the discussion is identical if Z com-
prises continuous variables or a combination of discrete and continuous variables,
with summation replaced by integration as appropriate.

We shall suppose that direct optimization of p(X|θ) is difficult, but that opti-
mization of the complete-data likelihood function p(X,Z|θ) is significantly easier.
Next we introduce a distribution q(Z) defined over the latent variables, and we ob-
serve that, for any choice of q(Z), the following decomposition holds
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Note that L(q, θ) is a functional (see Appendix D for a discussion of functionals)
of the distribution q(Z), and a function of the parameters θ. It is worth studying
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Figure 9.14 The EM algorithm involves alter-
nately computing a lower bound
on the log likelihood for the cur-
rent parameter values and then
maximizing this bound to obtain
the new parameter values. See
the text for a full discussion.

θold θnew

L (q, θ)

ln p(X|θ)

complete data) log likelihood function whose value we wish to maximize. We start
with some initial parameter value θold, and in the first E step we evaluate the poste-
rior distribution over latent variables, which gives rise to a lower bound L(θ, θ(old))
whose value equals the log likelihood at θ(old), as shown by the blue curve. Note that
the bound makes a tangential contact with the log likelihood at θ(old), so that both
curves have the same gradient. This bound is a convex function having a uniqueExercise 9.25
maximum (for mixture components from the exponential family). In the M step, the
bound is maximized giving the value θ(new), which gives a larger value of log likeli-
hood than θ(old). The subsequent E step then constructs a bound that is tangential at
θ(new) as shown by the green curve.

For the particular case of an independent, identically distributed data set, X
will comprise N data points {xn} while Z will comprise N corresponding latent
variables {zn}, where n = 1, . . . , N . From the independence assumption, we have
p(X,Z) =

∏
n p(xn, zn) and, by marginalizing over the {zn} we have p(X) =∏

n p(xn). Using the sum and product rules, we see that the posterior probability
that is evaluated in the E step takes the form

p(Z|X, θ) =
p(X,Z|θ)∑

Z

p(X,Z|θ)
=

N∏

n=1

p(xn, zn|θ)

∑

Z

N∏

n=1

p(xn, zn|θ)

=
N∏

n=1

p(zn|xn, θ) (9.75)

and so the posterior distribution also factorizes with respect to n. In the case of
the Gaussian mixture model this simply says that the responsibility that each of the
mixture components takes for a particular data point xn depends only on the value
of xn and on the parameters θ of the mixture components, not on the values of the
other data points.

We have seen that both the E and the M steps of the EM algorithm are increas-
ing the value of a well-defined bound on the log likelihood function and that the
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