
Multilayer Percetprons
Bryan Pardo

Deep Learning
Northwestern University

Deep Learning: Bryan Pardo, Northwestern University, Fall 2021

Combining perceptrons can make any Boolean function

?
x0

?x1

?
x2

?
x0

?
x0

XOR?

?

?

?

…if you can set the weights & connections right

A problem with step functions: assignment of error

• Stymies multi-layer weight learning

• Limits us to a single layer of units

• Thus, only linear functions

• You can hand-wire XOR
perceptrons, but the sytem can’t
learn XOR with perceptrons

𝑤!
𝑤"

𝑤#

𝑤$

𝑤%

1

1

1

𝑤&

𝑤'

𝑤(𝑥!

𝑥"
𝑤)

Linear Units & Delta Rule

Solution: Remove the step function

𝑓 𝐱 = ∑!"#$ 𝑤!𝑥!= 𝐰%𝐱

𝐰%𝐱

𝑓 𝐱

Better & worse than a perceptron

• All changes in input result in changed
output

• This gives us a gradient everywhere

• We can learn multiple layers of
weights.

• Combining linear functions only gives
you linear functions

• you can’t represent XOR

𝑤!
𝑤&

𝑤#

𝑤$

𝑤%

1

1

1

𝑤(

𝑤)

𝑤*𝑥!

𝑥"
𝑤'

Many linear units: Only linear decisions

This is XOR.

A multilayer
perceptron with
linear units
CANNOT learn XOR

The Sigmoid Unit
Rumelhart, David E., James L. McClelland, and PDP Research
Group. Parallel distributed processing. Vol. 1. Cambridge, MA, USA::
MIT press, 1987.

Sigmoid (aka Logistic) function: best of both

• Perceptron

• Linear

• Sigmoid

𝑓 𝑥 = 1 𝑖𝑓 0 <(
#$%

&

𝑤#𝑥#

−1 𝑒𝑙𝑠𝑒

𝑓 𝑥 = 𝐰'𝐱 =(
#$%

&

𝑤#𝑥#

𝑓 𝑥 =
1

1 + 𝑒((𝐰!𝐱)

A network of sigmoid units

• Small changes in input result in
output

• This gives us a gradient everywhere

• We can learn multiple layers of
weights.

• Combining layers gives non-linear
functions

𝑤!
𝑤*

𝑤#

𝑤$

𝑤%

1

1

1

𝑤&

𝑤'

𝑤(𝑥!

𝑥"
𝑤)

Sigmoid changes (almost) everything
Easy to differentiate

𝜎! 𝐰𝑻𝐱 = 𝜎 𝐰𝑻𝐱 (1- 𝜎(𝐰𝑻𝐱))

Gradient everywhere

This allows backpropagation of the gradient through
multiple layers

Nonlinearity allows arbitrary nonlinear functions to be built
by using multiple layers.

Sigmoid (aka Logistic) function: best of both

• Perceptron

• Linear

• Sigmoid

𝑓 𝑥 = 1 𝑖𝑓 0 <(
#$%

&

𝑤#𝑥#

−1 𝑒𝑙𝑠𝑒

𝑓 𝑥 = 𝐰'𝐱 =(
#$%

&

𝑤#𝑥#

𝑓 𝑥 = 𝜎 𝑥 =
1

1 + 𝑒((𝐰!𝐱)

What’s cool about the sigmoid function
• It looks like a rounded step function, so we can build circuits of

arbitrary functions like we can with perceptrons

• It has non-zero slope everywhere and no sharp corners

• The derivative of the function is this:

• …and it’s easy to plug into the gradient descent algorithm to get the
learning rule.

𝑑𝜎 𝑧
𝑑𝑧

= 𝜎 𝑧 (1 − 𝜎 𝑧)

For each dimension i, take the partial derivative
#$
#%!

= #$
&'

&'
#(

#(
#%!

gives the change of our loss function 𝐿 with respect to weight 𝑤!

Here, 𝐿 = "
#
(𝑦 − '𝑦)𝟐 and '𝑦 = σ 𝑧 = "

"%&!"
and 𝑧 = 𝐰'𝐱

Therefore ()
(*+
= 𝑦 − '𝑦 = 𝑦 − σ 𝑧

..and (*+
(, = 𝜎 𝑧 (1 − 𝜎 𝑧), as was given to us.

…and (,(-#
= 𝑥! , since 𝑧 = 𝐰'𝐱 = 𝑤.𝑥.…+𝑤!𝑥!…+𝑤/𝑥/

Therefore, ()(-#
= 𝑦 − σ 𝑧 𝜎 𝑧 (1 − 𝜎 𝑧)𝑥!

For each dimension i, take the partial derivative

From the previous slide: #$
#%!

= 𝑦 − σ 𝑧 𝜎 𝑧 (1 − 𝜎 𝑧)𝑥)

Let!s compose σ 𝑧 = *
*+,"#

and 𝑧 = 𝐰-𝐱 into one function
(called σ 𝐱), to get the following:

σ 𝐱 = *

*+,"𝐰%𝐱

This lets us now write the change in loss as:

#$
#%!

= 𝑦 − σ 𝐱 𝜎 𝐱 (1 − 𝜎 𝐱)𝑥)

The promise of many layers

• Each layer learns an abstraction of its input representation (we hope)
•
• As we go up the layers, representations become increasingly abstract

• The hope is that the intermediate abstractions facilitate learning
functions that require non-local connections in the input space
(recognizing rotated & translated digits in images, for example)

• Modern neural networks are up to 100 layers deep

Multilayer Perceptron with sigmoid units

This is XOR.

A multilayer
perceptron with
sigmoid units CAN
learn XOR…or any
other arbitrary
Boolean function.

Example objective J : sum of squared errors

SSE = (yi
i

n

∑ − h(xi))
2

g(x) > 0g(x) < 0

Gradient non-zero everywhere!

ℎ 𝑥 = 𝑓 𝑥 =
1

1 + 𝑒((𝐰!𝐱)

Backpropagation of error

Where we left off

• We have the 𝜎(𝑥) sigmoid function that we can train with gradient
descent, because it’s differentiable and has a non-zero gradient
everywhere.
• We can plug multiple sigmoids together to form arbitrary Boolean

functions, by just interpreting the last output with sign(𝜎(𝑥))
• We now need a way to have error from the output sigmoid function

to flow to the input, so we can adjust the parameters of every 𝜎(𝑥)
on the path from the input to the output when we do our gradient
descent.

Consider one output node

Output
Units

Input
Units

Weight
Matrix

Weight
Matrix

Hidden
Units

Let’s define a function…

𝛿 = 𝑦 − σ 𝐱 𝜎 𝐱 (1 − 𝜎 𝐱)

Now this…

()
(-#

= 𝑦 − σ 𝐱 𝜎 𝐱 (1 − 𝜎 𝐱)𝑥!

…becomes this:
-.
-/"

= 𝛿𝑥#

For any output node 𝑘 we just use
this, as before.

Consider one hidden node

Output
Units

Input
Units

Weight
Matrix

Weight
Matrix

Hidden
Units

For a hidden node ℎ we need to
redefine 𝛿. Instead of comparing the
output of the node to a known target
output 𝑦, we look at its contribution to
the output of the 𝑘 nodes it is
connected to at the next layer.

𝛿 = 4
0
𝑤0 𝛿0 𝜎 𝐱 (1 − 𝜎 𝐱)

…and we then do:
#$
#%!

= 𝛿𝑥)

We can do this repeatedly for multiple
hidden layers.

Some stuff I should
mention

Sigmoid + SSE are not your only choices

• Pick an activation function

• Pick a loss function

• Make sure they’re both differentiable (or sub-differentiable)

• You can now do backpropagation of error

TanH: A shifted sigmoid

• Sigmoid

• TanH

𝑓 𝑥 =
1

1 + 𝑒+(𝐰!𝐱)

𝑓 𝑥 =
2

1 + 𝑒+#(𝐰!𝐱)
− 1

Rectified Linear Unit (ReLU) & Soft Plus :

•ReLU

• Soft Plus

•Both can be combined in layers
to make non-linear functions

𝑓 𝑥 = max(0,𝐰0𝐱)

𝑓 𝑥 = ln(1 + 𝑒𝐰!𝐱)

“One Hot” Encoding

• A vector of values where a single element is 1 and all the rest are 0
• Common way to encode the true label, y, in a multi-class labeling

problem
• Can be interpreted as a probability distribution

y = 0 0 1 0 0 0 0 0 0 0 y = 0 0 0 0 0 1 0 0 0 0

Probability distribution

å
=

=
n

i
i

n

xP

xxXP

X

1

1

1)(:one tosum iesprobabilitTheir *

exclusive.mutually are outcomes These *

X.for outcomes possible ofset the
 },,...,{over onsdistributiy probabilit theis)(*

.experiment some represents variablerandom Discrete *

Soft Max Function

• Turns an N-dimensional vector of real numbers into a probability
distribution, even if the numbers are both pos
• For a deep net, 𝑎) is the output of the ith node in the output layer

𝑝!=
"!"

∑#$%
& "!#

Why softmax?

Why do I need this? 𝑝#=
$!"

∑#$%
& $!#

Wouldn’t taking the absolute value and averaging do just as well?

𝑝#=
|𝑎#|

∑&'() |𝑎&|

• Softmax is a multivariate extension of the sigmoid (logistic) function

• When combined with cross entropy loss function, the resulting derivative is
a very nice one.

Entropy
• Entropy is the measure of the skewedness of a distribution
• The higher the entropy, the harder it is to guess the value a random

variable will take when we draw from the distribution.
• Here,

𝐻(𝑃) = −'
'()

*

𝑃(𝑖)log(𝑃(𝑖))

Some examples

entropy =3.1525e-305

1 2 3
0

0.2

0.4

0.6

0.8

1

pr
ob
ab
ilit
y

entropy =0.69315

1 2 3
0

0.2

0.4

0.6

0.8

1

entropy =1.0297

1 2 3
0

0.2

0.4

0.6

0.8

1

Cross Entropy

• Cross entropy is a measure of the similarity between distributions
• It is *NOT* symmetric.

𝐻(𝑃, 𝑄) = −'
'()

*

𝑃(𝑖)log(𝑄(𝑖))

An example

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1 2 3 4
0

0.2

0.4

0.6

0.8

1

Distribution P Distribution Q

𝐻(𝑃, 𝑄) = −4
!1"

2

𝑃(𝑖)log(𝑄(𝑖)) = 1.39

An example

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1 2 3 4
0

0.2

0.4

0.6

0.8

1

Distribution P Distribution Q

𝐻(𝑃, 𝑄) = −4
!1"

2

𝑃(𝑖)log(𝑄(𝑖)) = ∞

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1 2 3 4
0

0.2

0.4

0.6

0.8

1

Cross Entropy Loss Function

Given: “true” distribution 𝑦 = {𝑦(,𝑦*, … 𝑦)} <-often a one-hot encoding
and estimated distribution ;𝑦 = {;𝑦(, ;𝑦*, … ;𝑦)} <-soft max over the last layer

Define cross entropy loss between 2 distributions as

𝐿 𝑦, $𝑦 = −'
!"#

$

𝑦!log($𝑦!)

A common approach…

• Define labels with a one-hot vector encoding

• Make the last layer have n nodes for an n-way classification problem

• Apply soft max to the last layer

• Use a cross-entropy loss function

• The resulting derivative of the loss function is wonderfully simple:
𝜕𝐿
𝜕𝑎)

= 8𝑦) − 𝑦)
L is the loss, i is the index to a node, a is the output of the last layer, &𝑦 is the softmax probability
distribution over the output layer of the network and y is the one-hot-encoding label.

There are many activation & loss functions

• As a system designer, you need to consider what activation function
make sense for your problem

• The right loss function makes the difference between a learnable
problem and an unlearnable one

• Different layers may have different activation functions

• Multiple loss functions may be used when teaching the network

