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Combining perceptrons can make any Boolean function

..If you can set the weights & connections right



A problem with step functions: assignment of error

* Stymies multi-layer weight learning

* Limits us to a single layer of units

* Thus, only linear functions

* You can hand-wire XOR
perceptrons, but the sytem can’t
learn XOR with perceptrons




Linear Units & Delta Rule



Solution: Remove the step function
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Better & worse than a perceptron

* All changes in input result in changed
output

* This gives us a gradient everywhere

* We can learn multiple layers of
weights.

* Combining linear functions only gives
you linear functions

e you can’t represent XOR




Many linear units: Only linear decisions

O A

This is XOR.

A multilayer
perceptron with
linear units
CANNOT learn XOR



The Sigmoid Unit

Rumelhart, David E., James L. McClelland, and PDP Research

Group. Parallel distributed processing. Vol. 1. Cambridge, MA, USA::
MIT press, 1987.



Sigmoid (aka Logistic) function: best of both
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A network of sigmoid units

* Small changes in input result in
output

* This gives us a gradient everywhere

* We can learn multiple layers of
weights.

* Combining layers gives non-linear
functions




Sigmoid changes (almost) everything

Easy to differentiate
o' (wTx) = o(wTx)(1- o(wTx))
Gradient everywhere

This allows backpropagation of the gradient through
multiple layers

Nonlinearity allows arbitrary nonlinear functions to be built
by using multiple layers.



Sigmoid (aka Logistic) function: best of both
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What's cool about the sigmoid function

* It looks like a rounded step function, so we can build circuits of
arbitrary functions like we can with perceptrons

* It has non-zero slope everywhere and no sharp corners

do(z)
dz

 The derivative of the function is this:

=0(2)(1-0(2))

e ...and it’s easy to plug into the gradient descent algorithm to get the
learning rule.



For each dimension /, take the partial derivative
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For each dimension /, take the partial derivative

From the previous slide: — = (y — G(Z))a(z)(l — 0(2))x;
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This lets us now write the change in loss as:
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The promise of many layers

* Each layer learns an abstraction of its input representation (we hope)

* As we go up the layers, representations become increasingly abstract

* The hope is that the intermediate abstractions facilitate learning
functions that require non-local connections in the input space
(recognizing rotated & translated digits in images, for example)

* Modern neural networks are up to 100 layers deep



Multilayer Perceptron with sigmoid units

A - This is XOR.

A multilayer
perceptron with
sigmoid units CAN
learn XOR...or any
other arbitrary
Boolean function.




Example objective J : sum of squared errors
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Gradient non-zero everywhere!



Backpropagation of error



Where we |eft off

* We have the g(x) sigmoid function that we can train with gradient
descent, because it’s differentiable and has a non-zero gradient
everywhere.

* We can plug multiple sigmoids together to form arbitrary Boolean
functions, by just interpreting the last output with sign(a(x))

* We now need a way to have error from the output sigmoid function
to flow to the input, so we can adjust the parameters of every o (x)
on the path from the input to the output when we do our gradient
descent.



Consider one output node

Let's define a function...

Output

§ = (y — G(X)) o(x)(1 —o0(x)) Units
Now this... Weight
Matrix
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...becomes this: — = 0x; RIS T Weight
J . . . Matrix

For any output node k we just use ' ' V ' ‘ Input

this, as before. Units



Consider one hidden node

For a hidden node h we need to
redefine §. Instead of comparing the
output of the node to a known target
output y, we look at its contribution to
the output of the k nodes it is
connected to at the next layer.

§ = (Ekwk 5k) o(x)(1 - o(x))
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...and we thendo: — = 5xl-
ow;

We can do this repeatedly for multiple
hidden layers.
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Some stuff | should
mention



Sigmoid + SSE are not your only choices

* Pick an activation function
* Pick a loss function
* Make sure they’re both differentiable (or sub-differentiable)

* You can now do backpropagation of error



anH: A shifted sigmoid

e TanH f(x) —




Rectified Linear Unit (ReLU) & Soft Plus :

*RelU  f(x) = max(0,w'x)

 Soft Plus f(x) =1In(1 + eWTX)

* Both can be combined in layers
to make non-linear functions
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“One Hot” Encoding

* A vector of values where a single element is 1 and all the rest are O

* Common way to encode the true label, y, in a multi-class labeling
problem

* Can be interpreted as a probability distribution

‘g’

y=0010000000 y=0000010000




Probability distribution

* Discrete random variable X represents some experiment.

* P(X)1s the probability distributions over {x,...,x, },

the set of possible outcomes for X.

* These outcomes are mutually exclusive.

* Their probabilities sum to one : Z P(x;)=1
i=l1



Soft Max Function

* Turns an N-dimensional vector of real numbers into a probability
distribution, even if the numbers are both pos

* For a deep net, a; is the output of the ith node in the output layer
e%i

Pi= SN _a;
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Why softmax?

aj

Why do | need this? ;= €
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Wouldn’t taking the absolute value and averaging do just as well?
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e Softmax is a multivariate extension of the sigmoid (logistic) function

* When combined with cross entropy loss function, the resulting derivative is
a very nice one.



Entropy

* Entropy is the measure of the skewedness of a distribution

* The higher the entropy, the harder it is to guess the value a random
variable will take when we draw from the distribution.

* Here,

N
H(P) == ) P()log(P(D)



Some examples
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Cross Entropy

* Cross entropy is a measure of the similarity between distributions
* [tis *NOT* symmetric.

N
H(P,Q) = - ) P(Dlog(Q(1))



An example
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An example
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Cross Entropy Loss Function

Given: “true” distribution y = {y,,y,, ... Yy} <-often a one-hot encoding

and estimated distribution y = {y;,¥>, ... ¥y} <-soft max over the last layer

Define cross entropy loss between 2 distributions as

N
Ly, y) = — z yilog(y;)
i=1



A common approach...

* Define labels with a one-hot vector encoding

* Make the last layer have n nodes for an n-way classification problem
* Apply soft max to the last layer

* Use a cross-entropy loss function

* The resulting derivative of the loss function is wonderfully simple:

oL

L is the loss, iisthe index to a node, a is the output of the last layer, y is the softmax probability
distribution over the output layer of the network and y is the one-hot-encoding label.



There are many activation & loss functions

* As a system designer, you need to consider what activation function
make sense for your problem

* The right loss function makes the difference between a learnable
problem and an unlearnable one

* Different layers may have different activation functions

* Multiple loss functions may be used when teaching the network



