Multilayer Percetprons

Bryan Pardo
Deep Learning
Northwestern University

Deep Learning: Bryan Pardo, Northwestern University, Fall 2021

Combining perceptrons can make any Boolean function

..If you can set the weights & connections right

A problem with step functions: assignment of error

* Stymies multi-layer weight learning

* Limits us to a single layer of units

* Thus, only linear functions

* You can hand-wire XOR
perceptrons, but the sytem can’t
learn XOR with perceptrons

Linear Units & Delta Rule

Solution: Remove the step function

f(x) /
wix

F) = 3o wixi= wx

Better & worse than a perceptron

* All changes in input result in changed
output

* This gives us a gradient everywhere

* We can learn multiple layers of
weights.

* Combining linear functions only gives
you linear functions

e you can’t represent XOR

Many linear units: Only linear decisions

O A

This is XOR.

A multilayer
perceptron with
linear units
CANNOT learn XOR

The Sigmoid Unit

Rumelhart, David E., James L. McClelland, and PDP Research

Group. Parallel distributed processing. Vol. 1. Cambridge, MA, USA::
MIT press, 1987.

Sigmoid (aka Logistic) function: best of both

(n
* Perceptron f(x) = { 1if 0 < 2 WiXi
i=0 =

\—1 else

n
e Linear . / ;
f(X) — WTX — z W;X;
1=0

1
1+e- W

* Sigmoid f(x) =

l

A network of sigmoid units

* Small changes in input result in
output

* This gives us a gradient everywhere

* We can learn multiple layers of
weights.

* Combining layers gives non-linear
functions

Sigmoid changes (almost) everything

Easy to differentiate
o' (wTx) = o(wTx)(1- o(wTx))
Gradient everywhere

This allows backpropagation of the gradient through
multiple layers

Nonlinearity allows arbitrary nonlinear functions to be built
by using multiple layers.

Sigmoid (aka Logistic) function: best of both

(n
* Perceptron f(x) = « 1if 0< Z WiXi
i=0 =

\—1 else

o A
* Linear f(x) — WTX — Z W;X; < / .
1=0

1
-sigmoid - f(x) =000 = 17 T I

l

What's cool about the sigmoid function

* It looks like a rounded step function, so we can build circuits of
arbitrary functions like we can with perceptrons

* It has non-zero slope everywhere and no sharp corners

do(z)
dz

 The derivative of the function is this:

=0(2)(1-0(2))

e ...and it’s easy to plug into the gradient descent algorithm to get the
learning rule.

For each dimension /, take the partial derivative

oL _ 9L dY 0z
dw; 09 0z ow;

gives the change of our loss function L with respect to weight w;

~ 1 T

_ 1. 52 _ _ _
Here,L—Z(y y)* and y—cr(z)—1+e_z and z=w'Xx

oL ~
Therefore i (y—9) = (y — G(Z))

0y

..and — = 0(z)(1 — a(z)), as was given to us.
0z . T
...and S— =X;,sincez =W X = WoXg ... + WX ...+ wgxg
l
oL
Therefore, I (y — G(Z))O'(Z)(l — 0(2))x;

For each dimension /, take the partial derivative

From the previous slide: — = (y — G(Z))a(z)(l — 0(2))x;

an

1
Let’'s compose o(z) =
P () 1+e~ 2

(called 0(x)), to get the following:

and z = wlx into one function

1
oX) =
() 1+e~W'X

This lets us now write the change in loss as:

=(y —o(x))e(x)(1 — 0 (x))x;

Bwl

The promise of many layers

* Each layer learns an abstraction of its input representation (we hope)

* As we go up the layers, representations become increasingly abstract

* The hope is that the intermediate abstractions facilitate learning
functions that require non-local connections in the input space
(recognizing rotated & translated digits in images, for example)

* Modern neural networks are up to 100 layers deep

Multilayer Perceptron with sigmoid units

A - This is XOR.

A multilayer
perceptron with
sigmoid units CAN
learn XOR...or any
other arbitrary
Boolean function.

Example objective J : sum of squared errors

s ®
, ©

h(x) = f(x) = ;

A O + e~ W)
Ag(X) <0 O 2(x)>0
A
A o
‘ ® | SSE=Y(y,~h(x,)’

Gradient non-zero everywhere!

Backpropagation of error

Where we |eft off

* We have the g(x) sigmoid function that we can train with gradient
descent, because it’s differentiable and has a non-zero gradient
everywhere.

* We can plug multiple sigmoids together to form arbitrary Boolean
functions, by just interpreting the last output with sign(a(x))

* We now need a way to have error from the output sigmoid function
to flow to the input, so we can adjust the parameters of every o (x)
on the path from the input to the output when we do our gradient
descent.

Consider one output node

Let's define a function...

Output

§ = (y — G(X)) o(x)(1 —o0(x)) Units
Now this... Weight
Matrix

oL
—= (y — g(x))o'(x)(l — 0(X))x; Hidden
l Units
. 0L .

...becomes this: — = 0x; RIS T Weight
J . . . Matrix

For any output node k we just use ' ' V ' ‘ Input

this, as before. Units

Consider one hidden node

For a hidden node h we need to
redefine §. Instead of comparing the
output of the node to a known target
output y, we look at its contribution to
the output of the k nodes it is
connected to at the next layer.

§ = (Ekwk 5k) o(x)(1 - o(x))

oL
...and we thendo: — = 5xl-
ow;

We can do this repeatedly for multiple
hidden layers.

Output
Units

Weight
Matrix

Hidden
Units

Weight
Matrix

Input
Units

Some stuff | should
mention

Sigmoid + SSE are not your only choices

* Pick an activation function
* Pick a loss function
* Make sure they’re both differentiable (or sub-differentiable)

* You can now do backpropagation of error

anH: A shifted sigmoid

e TanH f(x) —

Rectified Linear Unit (ReLU) & Soft Plus :

*RelU f(x) = max(0,w'x)

 Soft Plus f(x) =1In(1 + eWTX)

* Both can be combined in layers
to make non-linear functions

v

y 3
/
e
'

“One Hot” Encoding

* A vector of values where a single element is 1 and all the rest are O

* Common way to encode the true label, y, in a multi-class labeling
problem

* Can be interpreted as a probability distribution

‘g’

y=0010000000 y=0000010000

Probability distribution

* Discrete random variable X represents some experiment.

* P(X)1s the probability distributions over {x,...,x, },

the set of possible outcomes for X.

* These outcomes are mutually exclusive.

* Their probabilities sum to one : Z P(x;)=1
i=l1

Soft Max Function

* Turns an N-dimensional vector of real numbers into a probability
distribution, even if the numbers are both pos

* For a deep net, a; is the output of the ith node in the output layer
e%i

Pi= SN _a;

Zj:]_ e]

Why softmax?

aj

Why do | need this? ;= €

I ©N aj

Wouldn’t taking the absolute value and averaging do just as well?

la;|

9’=1 |a;]

Pi=

e Softmax is a multivariate extension of the sigmoid (logistic) function

* When combined with cross entropy loss function, the resulting derivative is
a very nice one.

Entropy

* Entropy is the measure of the skewedness of a distribution

* The higher the entropy, the harder it is to guess the value a random
variable will take when we draw from the distribution.

* Here,

N
H(P) ==) P()log(P(D)

Some examples

08

probability

o
~

0.2

entropy =3.1525e-305

o
o

08

06|

04r

0.2

entropy =0.69315

08|

06|

entropy =1.0297

Cross Entropy

* Cross entropy is a measure of the similarity between distributions
* [tis *NOT* symmetric.

N
H(P,Q) = -) P(Dlog(Q(1))

An example

Distribution P Distribution Q
I | | | | _ I . . | .
08| - 08/
06| - 06/
04! - 04
02| - 02/
° T 2 3 a4 °

N
H(P,Q) = -) P()log(Q(1)) = 1.39
=1

An example

0.8

06

04

Distribution P

0

Distribution Q

1t

0.8

0.6

04rF

0.2F

.1

2

N
H(P,Q) ==) P(Dlog(Q(D)) = o
=1

3

4

Cross Entropy Loss Function

Given: “true” distribution y = {y,,y,, ... Yy} <-often a one-hot encoding

and estimated distribution y = {y;,¥>, ... ¥y} <-soft max over the last layer

Define cross entropy loss between 2 distributions as

N
Ly, y) = — z yilog(y;)
i=1

A common approach...

* Define labels with a one-hot vector encoding

* Make the last layer have n nodes for an n-way classification problem
* Apply soft max to the last layer

* Use a cross-entropy loss function

* The resulting derivative of the loss function is wonderfully simple:

oL

L is the loss, iisthe index to a node, a is the output of the last layer, y is the softmax probability
distribution over the output layer of the network and y is the one-hot-encoding label.

There are many activation & loss functions

* As a system designer, you need to consider what activation function
make sense for your problem

* The right loss function makes the difference between a learnable
problem and an unlearnable one

* Different layers may have different activation functions

* Multiple loss functions may be used when teaching the network

