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Combining perceptrons can make any Boolean function
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…if you can set the weights & connections right



A problem with step functions: assignment of error

• Stymies multi-layer weight learning

• Limits us to a single layer of units

• Thus, only linear functions 

• You can hand-wire XOR 
perceptrons, but the sytem can’t 
learn XOR with perceptrons
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Linear Units & Delta Rule



Solution: Remove the step function

𝑓 𝐱 = ∑!"#$ 𝑤!𝑥!= 𝐰%𝐱
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Better & worse than a perceptron

• All changes in input result in changed 
output

• This gives us a gradient everywhere

• We can learn multiple layers of 
weights.

• Combining linear functions only gives 
you linear functions

• you can’t represent XOR 
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Many linear units: Only linear decisions

This is XOR.

A multilayer 
perceptron with 
linear units 
CANNOT learn XOR



The Sigmoid Unit
Rumelhart, David E., James L. McClelland, and PDP Research 
Group. Parallel distributed processing. Vol. 1. Cambridge, MA, USA:: 
MIT press, 1987.



Sigmoid (aka Logistic) function: best of both

• Perceptron

• Linear

• Sigmoid 
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A network of sigmoid units

• Small changes in input result in 
output

• This gives us a gradient everywhere

• We can learn multiple layers of 
weights.

• Combining layers gives non-linear 
functions 
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Sigmoid changes (almost) everything
Easy to differentiate

𝜎! 𝐰𝑻𝐱 = 𝜎 𝐰𝑻𝐱 (1- 𝜎(𝐰𝑻𝐱))

Gradient everywhere

This allows backpropagation of the gradient through 
multiple layers

Nonlinearity allows arbitrary nonlinear functions to be built 
by using multiple layers.



Sigmoid (aka Logistic) function: best of both

• Perceptron

• Linear

• Sigmoid 
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What’s cool about the sigmoid function
• It looks like a rounded step function, so we can build circuits of 

arbitrary functions  like we can with perceptrons

• It has non-zero slope everywhere and no sharp corners

• The derivative of the function is this: 

• …and it’s easy to plug into the gradient descent algorithm to get the 
learning rule.
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For each dimension i, take the partial derivative
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For each dimension i, take the partial derivative

From the previous slide: #$
#%!

= 𝑦 − σ 𝑧 𝜎 𝑧 (1 − 𝜎 𝑧 )𝑥)

Let!s compose σ 𝑧 = *
*+,"#

and   𝑧 = 𝐰-𝐱 into one function 
(called σ 𝐱 ), to get the following:
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The promise of many layers

• Each layer learns an abstraction of its input representation (we hope)
•
• As we go up the layers, representations become increasingly abstract

• The hope is that the intermediate abstractions facilitate learning 
functions that require non-local connections in the input space 
(recognizing rotated & translated digits in images, for example)

• Modern neural networks are up to 100 layers deep



Multilayer Perceptron with sigmoid units

This is XOR.

A multilayer 
perceptron with 
sigmoid units CAN 
learn XOR…or any 
other arbitrary 
Boolean function.



Example objective J : sum of squared errors
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g(x) > 0g(x) < 0

Gradient non-zero everywhere!
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Backpropagation of error



Where we left off

• We have the 𝜎(𝑥) sigmoid function that we can train with gradient 
descent, because it’s differentiable and has a non-zero gradient 
everywhere.
• We can plug multiple sigmoids together to form arbitrary Boolean 

functions, by just interpreting the last output with sign(𝜎(𝑥))
• We now need a way to have error from the output sigmoid function 

to flow to the input, so we can adjust the parameters of every 𝜎(𝑥)
on the path from the input to the output when we do our gradient 
descent.



Consider one output node
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Let’s define a function…

𝛿 = 𝑦 − σ 𝐱 𝜎 𝐱 (1 − 𝜎 𝐱 )

Now this…

()
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For any output node 𝑘 we just use 
this, as before.



Consider one hidden node
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For a hidden node ℎ we need to 
redefine 𝛿. Instead of comparing the 
output of the node to a known target 
output 𝑦, we look at its contribution to 
the output of the 𝑘 nodes it is 
connected to at the next layer.
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…and we then do:   
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We can do this repeatedly for multiple
hidden layers.



Some stuff I should 
mention



Sigmoid + SSE are not your only choices

• Pick an activation function

• Pick a loss function

• Make sure they’re both differentiable (or sub-differentiable)

• You can now do backpropagation of error



TanH: A shifted sigmoid

• Sigmoid

• TanH
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Rectified Linear Unit (ReLU) & Soft Plus :

•ReLU

• Soft Plus

•Both can be combined in layers 
to make non-linear functions

𝑓 𝑥 = max(0,𝐰0𝐱)

𝑓 𝑥 = ln(1 + 𝑒𝐰!𝐱)



“One Hot” Encoding

• A vector of values where a single element is 1 and all the rest are 0
• Common way to encode the true label, y,  in a multi-class labeling 

problem
• Can be interpreted as a probability distribution 

y = 0 0 1 0 0 0 0 0 0 0 y = 0 0 0 0 0 1 0 0 0 0



Probability distribution 
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Soft Max Function

• Turns an N-dimensional vector of real numbers into a probability 
distribution, even if the numbers are both pos
• For a deep net, 𝑎) is the output of the ith node in the output layer
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Why softmax?

Why do I need this? 𝑝#=
$!"

∑#$%
& $!#

Wouldn’t taking the absolute value and averaging do just as well?

𝑝#=
|𝑎#|

∑&'() |𝑎&|

• Softmax is a multivariate extension of the sigmoid (logistic) function

• When combined with cross entropy loss function, the resulting derivative is 
a very nice one.



Entropy
• Entropy is the measure of the skewedness of a distribution
• The higher the entropy, the harder it is to guess the value a random 

variable will take when we draw from the distribution.
• Here,  

𝐻(𝑃) = −'
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𝑃(𝑖)log(𝑃(𝑖))



Some examples
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Cross Entropy

• Cross entropy is a measure of the similarity between distributions
• It is *NOT* symmetric. 

𝐻(𝑃, 𝑄) = −'
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𝑃(𝑖)log(𝑄(𝑖))



An example
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An example
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Cross Entropy Loss Function 

Given: “true” distribution 𝑦 = {𝑦(,𝑦*, … 𝑦)} <-often a one-hot encoding
and  estimated distribution ;𝑦 = {;𝑦(, ;𝑦*, … ;𝑦)} <-soft max over the last layer

Define cross entropy loss between 2 distributions as 

𝐿 𝑦, $𝑦 = −'
!"#
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𝑦!log( $𝑦!)



A common approach…

• Define labels with a one-hot vector encoding

• Make the last layer have n nodes for an n-way classification problem

• Apply soft max to the last layer

• Use a cross-entropy loss function

• The resulting derivative of the loss function is wonderfully simple:
𝜕𝐿
𝜕𝑎)

= 8𝑦) − 𝑦)
L is the loss, i is the index to a node, a is the output of the last layer, &𝑦 is the softmax probability 
distribution over the output layer of the network  and y is the one-hot-encoding label. 



There are many activation & loss functions

• As a system designer, you need to consider what activation function 
make sense for your problem

• The right loss function makes the difference between a learnable 
problem and an unlearnable one

• Different layers may have different activation functions

• Multiple loss functions may be used when teaching the network


