Machine Learning

Measuring Distance
Why measure distance?

• Clustering requires distance measures.

• Local methods require a measure of “locality”

• Search engines require a measure of similarity
What is a “metric”?

- A function of two values with these four qualities.

\[d(x, y) = 0 \iff x = y \quad \text{(reflexivity)} \]
\[d(x, y) \geq 0 \quad \text{(non-negative)} \]
\[d(x, y) = d(y, x) \quad \text{(symmetry)} \]
\[d(x, y) + d(y, z) \geq d(x, z) \quad \text{(triangle inequality)} \]
What is a norm $||v||$?

- Loosely, it is a function that applies a positive value to all vectors (except the 0 vector) in a vector space.

- 3 properties:

 For all $a \in F$ and $u,v \in V$, a function $p : V \rightarrow F$

 $p(av) = |a| p(v)$ (positive scalability)

 $p(u) = 0$ iff u is the zero vector

 $p(u) + p(v) \geq p(u + v)$ (triangle inequality)
2 definitions (AKA why this is confusing)

- **A vector norm**

 assigns a strictly positive value to all vectors \mathbf{v} in a vector space...except the 0 vector, which has a 0 assigned to it. (see previous slide)

 $$||\mathbf{v}|| \geq 0$$

- **A normal vector**

 A vector is **normal** to another object if they are perpendicular to each other. So, a **normal vector** is perpendicular to the tangent plane of a surface at some point P.
Metric == Norm??

• Every norm determines a metric.
 Given a normed vector space, we can make a metric by saying

\[d(u, v) \equiv ||u - v|| \]

• Some metrics determine a norm.
 If the metric is on a vector space, you can define a norm by saying...

\[||u|| \equiv d(u, 0) \]
Euclidean Distance

- What people intuitively think of as “distance”
- Is it a metric?
- Is it a norm?

\[d(u, v) = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2} \]
Generalized Euclidean Distance

\[d(u, v) = \left[\sum_{i=1}^{n} |u_i - v_i|^2 \right]^{1/2} \]

Where...

\[u = [u_1, u_2, u_3, \ldots, u_n] \]

\[v = [v_1, v_2, v_3, \ldots, v_n] \]

\[u, v \in \mathbb{R}^n \]
L^p norms

- L^p norms are all special cases of this:

$$d(u, v) = \left[\sum_{i} |u_i - v_i|^p \right]^{1/p}$$

- $\|u\|_1 = L^1$ norm = Manhattan Distance: $p = 1$

- $\|u\|_2 = L^2$ norm = Euclidean Distance: $p = 2$

Hamming Distance: $p = 1$ and $\forall i, u_i, v_i \in \{0,1\}$
Weighting Dimensions

- Put point in the cluster with the closest center of gravity
- Which cluster should the red point go in?
- How do I measure distance in a way that gives the “right” answer for both situations?
Weighted Norms

- You can compensate by weighting your dimensions...

$$d(u, v) = \left[\sum_{i=1}^{n} w_i |u_i - v_i|^p \right]^{1/p}$$

This lets you turn your circle of equal-distance into an ellipse with axes parallel to the dimensions of the vectors.
Cosine Similarity $s(u, v)$

Sometimes, you don’t want to think about magnitude of a vector, just the direction.

$$s(u, v) = \frac{u^T v}{||u||_2 ||v||_2}$$

$$= \frac{\sum_{i=1}^{n} (u_i)(v_i)}{\sqrt{\sum_{i=1}^{n} (u_i-0)^2} \sqrt{\sum_{i=1}^{n} (v_i-0)^2}}$$

$$||u||_2 = d(u, 0) = \sqrt{\sum_{i=1}^{n} (u_i - 0)^2}$$
Cosine Distance

\[s(u, v) = \frac{u^T v}{\|u\|_2 \|v\|_2} \]

Cosine similarity goes as low as -1 and maximizes at 1, when \(x == y \).

To make it a distance measure (but still not a metric), make sure goes down when things are more similar and that the most similar pair gets a distance of 0

\[\text{cosine distance} \quad d(u, v) = 1 - s(u, v) \]
Cosine Distance

- What is the distance to the 0 vector?

- What is the distance between 2 vectors with the same angle, but different magnitudes?

- How do these things relate to the definition of being a metric?
Pearson Correlation Coefficient

- Measure of correlation between two variables
- Related to, but not identical to cosine similarity
- Pearson correlation coefficient
 - Range (-1, 1)
 - A perfect positive correlation: 1
 - A perfect negative correlation: -1

In Python,

```python
>> import scipy.stats
>> scipy.stats.pearsonr(array1, array2)
```
Pearson Sample Correlation r_{xy}

Mean: $\mu_x = \frac{\sum_{i=1}^{n} x_i}{n}$

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \mu_x) (y_i - \mu_y)}{\sqrt{\sum_{i=1}^{n} (x_i - \mu_x)^2} \sqrt{\sum_{i=1}^{n} (y_i - \mu_y)^2}}$$
Example correlations

Image from Wikipedia: contributed by DenisBoigelot
Pearson vs Cosine

Pearson Correlation Coefficient

\[r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)}{\sqrt{\sum_{i=1}^{n} (x_i - \mu_x)^2} \sqrt{\sum_{i=1}^{n} (y_i - \mu_y)^2}} \]

Cosine Similarity, where we add in some 0s, so the relationship becomes clear

\[s(u, v) = \frac{\sum_{i=1}^{n} (u_i - 0)(v_i - 0)}{\sqrt{\sum_{i=1}^{n} (u_i - 0)^2} \sqrt{\sum_{i=1}^{n} (v_i - 0)^2}} \]
Metric, or not?

• Driving distance with 1-way streets

• Categorical Stuff:
 – Is distance (Jazz to Blues to Rock) no less than distance (Jazz to Rock)?
Categorical Variables

• Consider feature vectors for genre & vocals:

 – Genre: \{Blues, Jazz, Rock, Zydeco\}
 – Vocals: \{vocals, no vocals\}

s1 = \{rock, vocals\}

s2 = \{jazz, no vocals\}

s3 = \{rock, no vocals\}

• Which two songs are more similar?
One Solution: Hamming distance

<table>
<thead>
<tr>
<th>Blues</th>
<th>Jazz</th>
<th>Rock</th>
<th>Zydeco</th>
<th>Vocals</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- \(s_1 = \{\text{rock, vocals}\}\)
- \(s_2 = \{\text{jazz, no_vocals}\}\)
- \(s_3 = \{\text{rock, no_vocals}\}\)

Hamming Distance = number of bits different between binary vectors
Hamming Distance

\[d(\vec{x}, \vec{y}) = \sum_{i=1}^{n} |x_i - y_i| \]

where \(\vec{x} = \langle x_1, x_2, \ldots, x_n \rangle \),

\(\vec{y} = \langle y_1, y_2, \ldots, y_n \rangle \)

and \(\forall i (x_i, y_i \in \{0,1\}) \)
Defining your own distance
(an example)

How often does artist x quote artist y?

Quote Frequency

<table>
<thead>
<tr>
<th></th>
<th>Beethoven</th>
<th>Beatles</th>
<th>Kanye</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beethoven</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beatles</td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Kanye</td>
<td>?</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Let’s build a distance measure!
Defining your own distance
(an example)

<table>
<thead>
<tr>
<th></th>
<th>Beethoven</th>
<th>Beatles</th>
<th>Kanye</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beethoven</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beatles</td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Kanye</td>
<td>?</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Quote frequency \(Q_f(x, y) = \text{value in table} \)

Distance \(d(x, y) = 1 - \frac{Q_f(x, y)}{\sum_{z \in \text{Artists}} Q_f(x, z)} \)
Missing data

- What if, for some category, on some examples, there is no value given?

- Approaches:
 - Discard all examples missing the category
 - Fill in the blanks with the mean value
 - Only use a category in the distance measure if both examples give a value
(one way of) handling missing attributes

\[w_i = \begin{cases}
0, & \text{if both } x_i \text{ and } y_i \text{ are defined} \\
1, & \text{else}
\end{cases} \]

\[d(\bar{x}, \bar{y}) = \frac{n}{n - \sum_{i=1}^{n} w_i} \left[\sum_{i=1}^{n} \phi(x_i, y_i) \right] \]

A scaling factor that adds weight to the distance, as there are fewer attributes used.

A distance measure that works on individual attributes.
One more distance measure

- Kullback–Leibler (KL) divergence
 - a non-symmetric measure of the difference between two probability distributions
 - not a metric, since it is not symmetric
 - Here’s the definition of KL divergence for discrete probability distributions P and Q

$$D_{KL} (P \parallel Q) = \sum_i \ln \left(\frac{P(i)}{Q(i)} \right) P(i)$$
KL Divergence as Cross Entropy

\[D_{KL}(P \parallel Q) = \sum_i \ln \left(\frac{P(i)}{Q(i)} \right) P(i) \]

\[= \sum_i \left(\ln(P(i)) - \ln(Q(i)) \right) P(i) \]

\[= \sum_i P(i) \ln P(i) - \sum_i P(i) \ln Q(i) \]
Edit Distance

- Query = string from finite alphabet
- Target = string from finite alphabet
- Cost of Edits = Distance
Levenshtein edit distance

\[M_{0,0} = 0 \]

\[M_{i,j} = \min \begin{cases} M_{i-1,j} + 1, \\ M_{i,j-1} + 1, \\ M_{i-1,j-1} + \mu(s_i, q_j) \end{cases} \]

3 possible operations

- Insertion
- Deletion
- Substitution

\[\mu(s_i, q_j) = \begin{cases} 0 \text{ if } s_i = q_j, \\ 1 \text{ otherwise} \end{cases} \]
return int LevenshteinDistance(char s[1..m], char t[1..n], deletionCost, insertionCost, substitutionCost)

// A standard approach is to set deletionCost = insertionCost = substitutionCost = 1

declare int M[0..m, 0..n] // M has (m+1) by (n+1) values
for i from 0 to m
 M[i, 0] := i*deletionCost // distance of any 1st string to an empty 2nd string
for j from 0 to n
 M[0, j] := j*insertionCost // distance of any 2nd string to an empty 1st string

for j from 1 to n
 for i from 1 to m
 if s[i] = t[j] then
 M[i, j] := M[i-1, j-1] // no operation cost, because they match
 else
 M[i, j] := minimum(M[i-1, j] + deletionCost,
 M[i, j-1] + insertionCost,
 M[i-1, j-1] + substitutionCost)

return M[m,n]
Working through an example

\[
M_{i,j} = \min \begin{cases}
M_{i-1,j} + 1 \\
M_{i,j-1} + 1 \\
M_{i-1,j-1} + \mu(s_i, q_j)
\end{cases}
\]

\[
M_{0,0} = 0
\]

\[
\mu(s_i, q_j) = \begin{cases}
0 & \text{if } s_i = q_j \\
1 & \text{otherwise}
\end{cases}
\]

<table>
<thead>
<tr>
<th>F</th>
<th>R</th>
<th>O</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,-,-</td>
<td>2,-,-</td>
<td>3,-,-</td>
</tr>
</tbody>
</table>

\[
\begin{array}{c|c|c|c|c}
M_{i-1,j-1} & M_{i-1,j} & M_{i,j} \\
\hline
D & -,-,1 & 2,1,2 & 2,2,3 & 3,3,4 & 4,4,5 \\
O & -,-,2 & 3,2,2 & 3,2,3 & 3,2,4 & 3,4,5 \\
G & -,-,3 & 4,3,3 & 4,3,3 & 4,3,3 & 4,2,4 \\
\end{array}
\]

Edit distance is 2 edits
Working through an example

- The final edit cost is the lowest value calculated for the lower right-hand corner of the matrix.
- Tracing a path from the lower right to the beginning shows 2 minimal-cost alignments, each with 1 substitution and one deletion:

<table>
<thead>
<tr>
<th>F</th>
<th>R</th>
<th>O</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>FROG</td>
<td>FROG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D−OG</td>
<td>−DOG</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 Edit matrix:
 - Substitution costs: 1
 - Insertion costs: 2
 - Deletion costs: 3

 Edit distance is 2 edits
(Somewhat more) General Edit Distance

\[
M_{i,j} = \min \left\{ \begin{array}{ll}
M_{i-1,j} + \mu(-, q_j) & \text{Insert} \\
M_{i,j-1} + \mu(s_i, -) & \text{Delete} \\
M_{i-1,j-1} + \mu(s_i, q_j) & \text{Match}
\end{array} \right.
\]

\[
\mu(s_i, q_j) = \text{whatever you want.}
\]

The distance between \(s_i\) and \(q_j\) on a keyboard?

The probability of substituting \(s_i\) for \(q_j\)?
Final notes on edit distance

- Used in many applications
 - Gene sequence matching (google: BLAST)
 - Spell checking
 - Music melody matching
- There are many variants of the algorithms
- The parameter weights strongly affect performance
- You need to pick the algorithm and parameters that make sense for your problem.
Some take-away thoughts

• Many machine learning methods are helped by having a distance measure
• Some methods require metrics
• Not all measures are metrics
• Some common distance measures:
 “P-norms”: Euclidean, Manhattan
 “Edit distance”: Levenshtein
 KL Divergence
 Mahalanobis