
Graphical Models

Zach Wood-Doughty and Bryan Pardo
CS 349 Fall 2021

Some slides taken from Mark Dredze
And inspired by Kevin Murphy



Probabilistic Models

• Some models we’ve considered have a probabilistic interpretation
• Linear Regression
• Gaussian Mixture Models

• No formal language to talk about models
• We’ve described the models and given intuition

• Example: Gaussian Mixture Models
• Assume that we first select a cluster
• We then generate an example

(features) given the cluster

• How can we describe this model formally?



Example Probabilistic System

• A collection of related binary random variables

• Each day with some probability, a runner Avery:
• Goes for a run
• Sprains an ankle
• Injuries their knee
• Goes to the hospital

• Given a sprained ankle, what’s the probability Avery goes to the 
hospital?

• What is the probability that Avery injuries their knee and goes to 
the hospital?

• etc



Example

•How do we answer these questions?
• What is the structure of these variables?
• What probabilities do I need to compute?
• Are any of the variables independent of each other?

•How can we represent the variables in a way that 
answers these questions?



Graphical Models
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Graphical Models

• Combination of probability theory and graph theory
• Combines uncertainty (probability) and complexity (graphs)
• Represent a complex system as a graph
• Gives modularity

• Standard algorithms for solving graph problems
• Many ML models can be framed as graphical models
• Logistic regression, linear Regression, GMMs, etc.



Representation

• A probabilistic system is encoded as a graph
• Nodes
• Random variables
• Could be discrete (this lecture) or continuous

• Edges
• Connections between two nodes
• Indicates a direct relationship between two random variables
• Note: the lack of an edge is very important
• No direct relationship

A



Graph Types

• Edge type determines graph type
• Directed (acyclic) graphs
• Edges have directions (A -> B)
• Assume DAGs (no cycles)
• Typically called Bayesian Networks
• Popular in AI and stats

• Undirected graphs
• Edges don’t have directions (A – B)
• Typically called Markov Random Fields (MRFs)
• Popular in physics and vision

A B

A B



Directed Graphs

• The direction of the edge indicates causation

A causes B

• Causation can be very intuitive
• We may know which random variable causes the other
• Use this intuition to create a graph structure

A B



Example

Generative Model The Generative Story
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Advantages?

• What have we gained with this representation?
• We could just draw a graph where everything is connected

vs.



Factorization

•Consider the joint probability of our example
• What is the size of the conditional probability table for the 

p(R, A, K, H) distribution?
• What can we do to simplify?
• Notice that A and K are independent given R
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Product Rule

• Can use the product rule to decompose joint probabilities
• p(a,b,c) = p(c|a,b) p(a,b)
• p(a,b,c) = p(c|a,b) p(b|a) p(a)

• This is true for any distribution
• Same for K variables
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Recall: independence

•The probability I eat pie today is independent of the 
probability of a blizzard in Japan.
•This is DOMAIN knowledge, typically supplied by the 

problem designer
• Independence implies:



How does independence help?

A B P(A, B)

F F 0.56

T F 0.24

F T 0.14

T T 0.06

1 Naive Bayes
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Conditional Independence

• Random variable X is conditionally independent of Y given Z if 
the probability of each is independent given Z
• p(x,y|z) = p(x|z)p(y|z)
• p(x|z, y) = p(x | z)
• Example
• X: I need an umbrella and Y: the ground is wet
• Not independent!
• If ground is wet, it’s probably raining and I’ll need an umbrella
• I am told it is raining; knowing this, the probability that I need an 

umbrella is independent of the ground being wet
• I gain no new information knowing that the ground is wet
• P(x | z, y) = p(x, z)



Factorization

• For any graphical model we can write the joint distribution using 
conditional probabilities
• We just need conditional probabilities for a node given its 

parents
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Counting parameters in CPTs

X1 X2 X3 . . . XM�1 XM

2

X1 X2 … XM P(X)

F F F F 0.001

T F F F 0.014

F T F F 0.004

T T F F 0.002

…

P(X1)

.5

X1 P(X2 | X1)

F 0.5

T 0.3

X1 X2 P(X3 | X2, X1)

F F 0.4

T F 0.3

F T 0.2

T T 0.7



Counting parameters in CPTs
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Conditional Probability Tables

• The CPTs specify the 
conditional probability 
distribution at each node
• CPTs reflect local 

information only

P(R=T)

.5

R P(K=T)

F 0.01

T 0.1

R P(A=T)

F 0.05

T 0.2

A K P(H=T)

F F 0

T F 0.3

F T .9

T T .99
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Factorization

• Consider the joint probability of our example
• The full p(R, A, K, H) is complex
• What can we do to simplify?
• Notice that A and K are independent given R

• Factor the joint probability according to 
the graph
• p(R, A, K, H) = p(H | A,K) p(A | R) p(K | R) p(R) 
• This is much simpler to compute, with fewer conditional 

probabilities track.
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Conditional Probability Tables

• Graph provides a problem structure that indicates relationships
• We use this structure to break down the problem into many local 

problems
• What is P(A=T | H=T)?
• Probability of ankle injury, given a trip to the hospital
• Break down using the network and CPTs



Observed Variables

• Variables are either
• Observed- we observe values in data
• Hidden- we cannot see values in data

• Indicate observed variables by shading
• Compute the remaining probabilities

given shaded value
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Plate Notation

• Plates in graphical models
• When many variables have same structure, we replace them 

with a plate
• The plate indicates repetition

• There are N days
• Did Avery go to the hospital on any day?
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Let’s consider a new model

• A model where we have label Y and example X

• At test time there’s no Y
• Estimate Y using X

• What model is this?

Y

X

M

Y

XX X

Y

X

M



Naïve Bayes 

• Generative Story
• Generate a label Y
• Given Y, generate each feature X independently

• Learning
• We observe X and Y, maximum likelihood solution

• Prediction
• Compute most likely value for Y given X

Y

X

M



Factorization
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Conditional Probability Tables

• The parameters correspond to CPTs
P(Y=0) P(Y=1)

.4 .6

Y P(X=0) P(X=1)

0 .2 .8

1 .6 .4

Y

X

M

K parameters (K-1)

M TablesKM parameters



Argmax Derivation

1 Naive Bayes

✓MAP = argmax
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Learning

•We assumed both examples (X) and labels (Y) for 
learning naïve Bayes
• Maximum likelihood solution
• Each entry in table are based on counts

•What if we only have X?
• Can use EM!

• Unsupervised NB: clustering
• Some labels: semi-supervised NB

Y

X

M



Conditional Independence

• What is p(x|y)?
• Probability of generating example x given that it has label y

• How hard is this?
• Remember that x is a vector
• Equivalent to
• Assuming binary features and binary label, how many 

parameters do we need?
• 2 * (2M-1) parameters!
• (2M-1) combinations for x
• 2 labels



Conditional Independence

• Random variable X is conditionally independent of Y given Z if 
the probability of each is independent given Z
• p(x,y|z) = p(x|z)p(y|z)
• p(x|z, y) = p(x | z)
• Example
• X: I need an umbrella and Y: the ground is wet
• Not independent!
• If ground is wet, it’s probably raining and I’ll need an umbrella
• I am told it is raining; knowing this, the probability that I need an 

umbrella is independent of the ground being wet
• I gain no new information knowing that the ground is wet
• P(x | z, y) = p(x, z)



Conditional Independence

• Assume each feature in x is independent given y
• Once I know y each feature in x is independent

• Why is this helpful?

• This is a naïve assumption (it’s very unlikely)



Conditional Independence

• How to estimate ?
• Lots of data: every time feature xij occurs with yi

• How many parameters do I need?
• Before: 2 * (2M-1)
• Now: 2 * M
• One parameter for each of M features

• It’s much easier to learn a smaller number of parameters



Naïve vs. Reality

• Positive: we now can parameterize our model
• Reality: naïve assumption very unlikely to be true
• Example:
• Document classification: sports vs. finance
• Each word in a document is a feature
• Naïve assumption: once I know the topic is sports, every word 

is conditionally independent
• Not true! Would be grammatically nonsense.



Naïve Assumptions vs. Reality

•Naïve approach often works well in practice
•Caution: features that are too dependent are 

difficult for model
• Create features that are minimally dependent
• Limits the expressiveness of features



Making more realistic assumptions

•Naïve Bayes makes assumptions
• Features (X) conditionally independent given label (Y)

•What would be a more realistic assumption?
•How does independence fit in graphical models?



Independence

• The best part of graphical models is what they do not show
• Consider the network

• A and B are independent
• P(A,B) = P(A) P(B)
• Variable independence allows us to build efficient models
• Recall discussion on Naïve Bayes

A B



Conditional Independence
•Are Knee and Ankle independent?
• No, but they are conditionally independent

given Run
• P(Knee, Ankle | Run)

= p(Knee | Run) p(Ankle | Run)
• Once we know whether Avery ran, no 

information about ankle injuries will inform us 
about knee injuries

•How do we know if something is independent?
• We can read it from the paths of the graph!
• No mathematical trickery needed
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Example 1

• Are A and B independent?
• Clearly not. Both depend on C

• Are A and B conditionally independent?
• Yes. Why?
• The connection of A and B to C is "tail-to-tail"
• Creates a dependence

• Conditioning on C “blocks the path" between A and B

A B

C

A B

C



Example 2

• Are A and B independent?
• No. A cause C which causes B

• Are A and B conditionally independent?
• Yes. Why?

• The connection of A and B to C is "head to tail"
• Creates a dependence

• When we condition on C, it blocks the path between A and B

A BC

A BC



Example 3

• Are A and B independent?
• Yes. A and B are generated without 

common parents
• Are A and B conditionally independent given C?
• No. Why?
• The connection of A and B to C is "head-to-head"
• Creates a dependence when C is observed

• When C is unobserved, the path is blocked
• When C is observed, the path becomes unblocked

A B

C



Blocked vs. Unblocked?

• Terminology: y is a descendent of x if there is a path from x to y 
(following the arrows)
• Tail-to-tail or head-to-tail node only blocks a path when it is observed
• A head-to-head node blocks a path when it is unobserved
• A head-to-head path will become unblocked if either node, or 

any of its descendents, is observed



Head-to-head dependence

• Suppose you see the grass outside is wet
• The two causes (sprinkler/rain) compete

to explain the grass

Sprinkler Rain

Wet 
Grass



Explaining Away

•This makes sense
• The rain explained the grass, so sprinkler is now less likely
• The rain explained away the state of the grass
• Don’t "need" to use sprinkler to explain it

•Thus, the observed head-to-head is unblocked
• Once we know the value of C, 

we learn something about A and B
A B

C



D-Separation

•Two nodes A and B are d-separated given observed 
node(s) C if all paths between A and B are blocked
• Blocked paths: two arrows on the path meet head-to-tail or 

tail-to-tail at a node in set C
• Or, the arrows meet head-to-head at a node which isn’t in C
• And none of its descendants are either

• If two (sets of) nodes are d-separated they are 
conditionally-independent!



Are A and B d-separated?

No Yes
C is a descendent of F is a tail to tail node 
head to head E

A F

E B

C

A F

E B

C



Are A and B d-separated?

A F

E B

C

Yes Yes

F is a tail-to-tail node E is head-to-head

A F

E B

C



Isolating Nodes

•How do we isolate a variable in the graph?
• We know how to make it conditionally independent
• We want to experiment with a variable in isolation
• We don’t want to enumerate all possible values of the 

whole network



Markov Blanket

•The Markov blanket of a node is the minimal set of 
nodes that isolates it from the graph
• A node conditioned on its Markov blanket is independent 

from all other nodes in the graph

•What nodes are in the blanket for X?
• Think about d-separation
• All of them!
• A Markov blanket depends on the 

parents, children, and co-parents

A B

X DC

E F



Graphical Representation
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Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples
from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the
value of the responsibilities γ(znk) associated with data point xn, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by γ(znk) for k = 1, 2, 3, respectively

matrix X in which the nth row is given by xT
n . Similarly, the corresponding latent

variables will be denoted by an N × K matrix Z with rows zT
n . If we assume that

the data points are drawn independently from the distribution, then we can express
the Gaussian mixture model for this i.i.d. data set using the graphical representation
shown in Figure 9.6. From (9.7) the log of the likelihood function is given by

ln p(X|π, µ,Σ) =
N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
. (9.14)

Before discussing how to maximize this function, it is worth emphasizing that
there is a significant problem associated with the maximum likelihood framework
applied to Gaussian mixture models, due to the presence of singularities. For sim-
plicity, consider a Gaussian mixture whose components have covariance matrices
given by Σk = σ2

kI, where I is the unit matrix, although the conclusions will hold
for general covariance matrices. Suppose that one of the components of the mixture
model, let us say the jth component, has its mean µj exactly equal to one of the data

Figure 9.6 Graphical representation of a Gaussian mixture model
for a set of N i.i.d. data points {xn}, with corresponding
latent points {zn}, where n = 1, . . . , N .

xn
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π
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PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Elements of Graphical Models (3) 

We distinguish between observed variables and 
hidden variables: 

                                

                        (deterministic  parameters omitted)
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Return to Naïve Bayes
q(Y=1)
.6

Y q(Xi=1 | Y)
0 .8

1 .4

Y

X

M

M Tables
2*M parameters

We then define the probability for any y, x1 . . . xd as

p(y, x1 . . . xd) = q(y)
dY

j=1

qj(xj |y)

The next section describes how the parameters can be estimated from training
examples. Once the parameters have been estimated, given a new test example
x = hx1, x2, . . . , xdi, the output of the NB classifier is

arg max
y2{1...k}

p(y, x1 . . . xd) = arg max
y2{1...k}

0

@q(y)
dY

j=1

qj(xj |y)

1

A

3 Maximum-Likelihood estimates for the Naive Bayes Model

We now consider how the parameters q(y) and qj(x|y) can be estimated from data.
In particular, we will describe the maximum-likelihood estimates. We first state the
form of the estimates, and then go into some detail about how the estimates are
derived.

Our training sample consists of examples (x(i), y(i)) for i = 1 . . . n. Recall
that each x(i) is a d-dimensional vector. We write x(i)j for the value of the j’th

component of x(i); x(i)j can take values �1 or +1.
Given these definitions, the maximum-likelihood estimates for q(y) for y 2

{1 . . . k} take the following form:

q(y) =

Pn
i=1[[y

(i) = y]]

n
=

count(y)
n

(2)

Here we define [[y(i) = y]] to be 1 if y(i) = y, 0 otherwise. Hence
Pn

i=1[[y
(i) =

y]] = count(y) is simply the number of times that the label y is seen in the training
set.

Similarly, the ML estimates for the qj(x|y) parameters (for all y 2 {1 . . . k},
for all x 2 {�1,+1}, for all j 2 {1 . . . d}) take the following form:

qj(x|y) =
Pn

i=1[[y
(i) = y and x(i)j = x]]

Pn
i=1[[y

(i) = y]]
=

countj(x|y)
count(y)

(3)

where

countj(x|y) =
nX

i=1

[[y(i) = y and x(i)j = x]]

This is a very natural estimate: we simply count the number of times label y is
seen in conjunction with xj taking value x; count the number of times the label y
is seen in total; then take the ratio of these two terms.
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p(spam)
0.1

Maximum Likelihood Estimate for NB

•Suppose I have ten emails:
one is spam (y=1) and nine are not (y=0)

•What’s the MLE for p(y)?
Y

X

M



Y p(“jackpot”=1 | Y)
Spam

Not

0.33
0.0

Maximum Likelihood Estimate for NB

•Suppose I have only two emails:
• Spam: “you win jackpot”
•Not: “how are you”

•What is p(“jackpot” | y)?

Y

X

M

Y p(“you”=1 | Y)
Spam

Not

0.33
0.33



Y p(“jackpot”=1 | Y)
Spam 1/3

Not 0/3

2/4
1/4

Smoothing the MLE Y

X

M
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We now consider how the parameters q(y) and qj(x|y) can be estimated from data.
In particular, we will describe the maximum-likelihood estimates. We first state the
form of the estimates, and then go into some detail about how the estimates are
derived.

Our training sample consists of examples (x(i), y(i)) for i = 1 . . . n. Recall
that each x(i) is a d-dimensional vector. We write x(i)j for the value of the j’th

component of x(i); x(i)j can take values �1 or +1.
Given these definitions, the maximum-likelihood estimates for q(y) for y 2

{1 . . . k} take the following form:

q(y) =

Pn
i=1[[y

(i) = y]]

n
=

count(y)
n

(2)

Here we define [[y(i) = y]] to be 1 if y(i) = y, 0 otherwise. Hence
Pn

i=1[[y
(i) =

y]] = count(y) is simply the number of times that the label y is seen in the training
set.

Similarly, the ML estimates for the qj(x|y) parameters (for all y 2 {1 . . . k},
for all x 2 {�1,+1}, for all j 2 {1 . . . d}) take the following form:

qj(x|y) =
Pn

i=1[[y
(i) = y and x(i)j = x]]

Pn
i=1[[y

(i) = y]]
=

countj(x|y)
count(y)

(3)

where

countj(x|y) =
nX

i=1

[[y(i) = y and x(i)j = x]]

This is a very natural estimate: we simply count the number of times label y is
seen in conjunction with xj taking value x; count the number of times the label y
is seen in total; then take the ratio of these two terms.

4



Maximum Likelihood Estimate for NB

•Suppose I have eleven emails:
one is spam and nine are not
one is unlabeled

•What’s the MLE for q(y)?
q(Y=1)

?Y

X

M



Y p(“jackpot”=1 | Y)
Spam

Not

0.33
0.0

Maximum Likelihood Estimate for NB

•Suppose I have only two emails:
• Spam: “you win jackpot”
•Not: “how are you”

•What is p(“jackpot” | y)?

Y

X

M

Y p(“you”=1 | Y)
Spam

Not

0.33
0.33



Expectation Maximization for Naïve Bayes

For this data, a good setting of the parameters of a NB model might be as
follows (we will soon formalize exactly what it means for the parameter values to
be a “good” fit to the data):

q(1) =
2

5
; q(2) =

3

5
; (7)

q1(+1|1) = 1; q2(+1|1) = 1; q3(+1|1) = 0; q4(+1|1) = 0; (8)

q1(+1|2) = 0; q2(+1|2) = 0; q3(+1|2) = 1; q4(+1|2) = 1 (9)

Thus there are two classes of documents. There is a probability of 2/5 of seeing
class 1, versus a probability of 3/5 of seeing class 2. Given class 1, we have the
vector x = h+1,+1,�1,�1i with probability 1; conversely, given class 2, we
have the vector x = h�1,�1,+1,+1i with probability 1.

Remark. Note that an equally good fit to the data would be the parameter values

q(2) =
2

5
; q(1) =

3

5
;

q1(+1|2) = 1; q2(+1|2) = 1; q3(+1|2) = 0; q4(+1|2) = 0;

q1(+1|1) = 0; q2(+1|1) = 0; q3(+1|1) = 1; q4(+1|1) = 1

Here we have just switched the meaning of classes 1 and 2, and permuted all of
the associated probabilities. Cases like this, where symmetries mean that multiple
models give the same fit to the data, are common in the EM setting.

5.1 The Maximum-Likelihood Problem for Naive Bayes with Missing
Labels

We now describe the parameter estimation method for Naive Bayes when the labels
y(i) for i 2 {1 . . . n} are missing. The first key insight is that for any example x, the
probability of that example under a NB model can be calculated by marginalizing
out the labels:

p(x) =
kX

y=1

p(x, y) =
kX

y=1

0

@q(y)
dY

j=1

qj(xj |y)

1

A

Given this observation, we can define a log-likelihood function as follows. The
log-likelihood function is again a measure of how well the parameter values fit the

9

http://www.cs.columbia.edu/~mcollins/em.pdf

E-Step:

Inputs: An integer k specifying the number of classes. Training examples (x(i))
for i = 1 . . . n where each x(i) 2 {�1,+1}d. A parameter T specifying the
number of iterations of the algorithm.

Initialization: Set q0(y) and q0j (x|y) to some initial values (e.g., random values)
satisfying the constraints

• q0(y) � 0 for all y 2 {1 . . . k}.
Pk

y=1 q
0(y) = 1.

• For all y, j, x, q0j (x|y) � 0. For all y 2 {1 . . . k}, for all j 2 {1 . . . d},

X

x2{�1,+1}
q0j (x|y) = 1

Algorithm:
For t = 1 . . . T

1. For i = 1 . . . n, for y = 1 . . . k, calculate

�(y|i) = p(y|x(i); ✓t�1) =
qt�1(y)

Qd
j=1 q

t�1
j (x(i)j |y)

Pk
y=1 q

t�1(y)
Qd

j=1 q
t�1
j (x(i)j |y)

2. Calculate the new parameter values:

qt(y) =
1

n

nX

i=1

�(y|i) qtj(x|y) =

P
i:x

(i)
j =x

�(y|i)
P

i �(y|i)

Output: Parameter values qT (y) and qT (x|y).

Figure 1: The EM Algorithm for Naive Bayes Models
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M-Step:



Can we make weaker assumptions?

Y

Xi

M - 1

Y

X2X1 X3
Xi+1

Y p(“jackpot”=1 | Y)
Spam

Not

Y Xi p(Xi+1=“win” | Xi, Y)
1 “you”

0 ”you”

1 “packers”

0 “packers”


