Graphical Models

Zach Wood-Doughty and Bryan Pardo CS 349 Fall 2021

Some slides taken from Mark Dredze And inspired by Kevin Murphy

Probabilistic Models

- Some models we've considered have a probabilistic interpretation
 - Linear Regression
 - Gaussian Mixture Models
- No formal language to talk about models
 - We've described the models and given intuition
- Example: Gaussian Mixture Models
 - Assume that we first select a cluster
 - We then generate an example (features) given the cluster
- How can we describe this model formally?

Example Probabilistic System

- A collection of related binary random variables
- Each day with some probability, a runner Avery:
 - Goes for a run
 - Sprains an ankle
 - Injuries their knee
 - Goes to the hospital
- Given a sprained ankle, what's the probability Avery goes to the hospital?
- What is the probability that Avery injuries their knee and goes to the hospital?
- etc

- How do we answer these questions?
 - What is the structure of these variables?
 - What probabilities do I need to compute?
 - Are any of the variables independent of each other?
- How can we represent the variables in a way that answers these questions?

Graphical Models

Graphical Models

- Combination of probability theory and graph theory
 - Combines uncertainty (probability) and complexity (graphs)
 - Represent a complex system as a graph
 - Gives modularity
 - Standard algorithms for solving graph problems
- Many ML models can be framed as graphical models
 - Logistic regression, linear Regression, GMMs, etc.

Representation

- A probabilistic system is encoded as a graph
- Nodes
 - Random variables
 - Could be discrete (this lecture) or continuous
- Edges
 - Connections between two nodes
 - Indicates a direct relationship between two random variables
 - Note: the lack of an edge is very important
 - No direct relationship

Graph Types

- Edge type determines graph type
- Directed (acyclic) graphs
 - Edges have directions (A -> B)
 - Assume DAGs (no cycles)
 - Typically called Bayesian Networks
 - Popular in AI and stats
- Undirected graphs
 - Edges don't have directions (A B)
 - Typically called Markov Random Fields (MRFs)
 - Popular in physics and vision

Directed Graphs

• The direction of the edge indicates causation

- Causation can be very intuitive
 - We may know which random variable causes the other
 - Use this intuition to create a graph structure

Advantages?

- What have we gained with this representation?
 - We could just draw a graph where everything is connected

Factorization

• Consider the joint probability of our example

- What is the size of the conditional probability table for the p(R, A, K, H) distribution?
- What can we do to simplify?
- Notice that A and K are independent given R

Product Rule

- Can use the product rule to decompose joint probabilities
 - p(a,b,c) = p(c|a,b) p(a,b)
 - p(a,b,c) = p(c|a,b) p(b|a) p(a)
- This is true for any distribution
- Same for K variables

$$\boldsymbol{p}(\boldsymbol{X}_{1} \dots \boldsymbol{X}_{K}) = \boldsymbol{p}(\boldsymbol{X}_{K} \mid \boldsymbol{X}_{1} \dots \boldsymbol{X}_{K-1}) \dots \boldsymbol{p}(\boldsymbol{X}_{2} \mid \boldsymbol{X}_{1}) \boldsymbol{p}(\boldsymbol{X}_{1})$$

Recall: independence

- The probability I eat pie today is independent of the probability of a blizzard in Japan.
- This is DOMAIN knowledge, typically supplied by the problem designer
- Independence implies:

$A \perp B \Rightarrow p(A \mid B) = p(A)$ $A \perp B \mid C \Rightarrow p(A, B \mid C) = p(A \mid C)p(B \mid C)$

How does independence help? $A \perp B \Rightarrow p(A \mid B) = p(A)$ $p(A) = \sum_{B} p(A, B)$

Α	В	P(A, B)
F	F	0.56
Т	F	0.24
F	Т	0.14
Т	Т	0.06

$$p(A) = \sum_{B} p(A, B)$$

= $p(A, B) + p(A, \neg B)$
= $0.24 + 0.06 = 0.3$
 $p(A|B) = \frac{p(A, B)}{p(B)}$
= $\frac{p(A, B)}{\sum_{A} p(A, B)}$
= $\frac{p(A, B)}{p(A, B) + p(\neg A, B)}$
= $\frac{0.06}{0.06 + 0.14}$
= $0.06/0.2 = 0.3$

 $A \perp B \mid C \Rightarrow p(A, B \mid C) = p(A \mid C)p(B \mid C)$

- Random variable X is conditionally independent of Y given Z if the probability of each is independent given Z
- p(x,y|z) = p(x|z)p(y|z)
- p(x | z, y) = p(x | z)
- Example
 - X: I need an umbrella and Y: the ground is wet
 - Not independent!
 - If ground is wet, it's probably raining and I'll need an umbrella
 - I am told it is raining; knowing this, the probability that I need an umbrella is independent of the ground being wet
 - I gain no new information knowing that the ground is wet
 - P(x | z, y) = p(x, z)

Factorization

- For any graphical model we can write the joint distribution using conditional probabilities
 - We just need conditional probabilities for a node given its parents

$$\boldsymbol{p}(\mathbf{x}) = \prod_{k=1}^{K} \boldsymbol{p}(\boldsymbol{x}_k | \text{parents}_k)$$

Counting parameters in CPTs

X ₁	X ₂		X _M	P(X)
F	F	F	F	0.001
Т	F	F	F	0.014
F	Т	F	F	0.004
Т	Т	F	F	0.002

X ₁	P(X ₂ X ₁)	
F	0.5	
Т	0.3	

X 1	X ₂	P(X ₃ X _{2,} X ₁)
F	Ŀ	0.4
Т	F	0.3
F	Т	0.2
Т	Т	0.7

$$\boldsymbol{p}(\mathbf{x}) = \prod_{k=1}^{K} \boldsymbol{p}(\boldsymbol{x}_k | \text{parents}_k)$$

Counting parameters in CPTs

X ₁	X ₂	•••	X _M	P(X)
F	Ŀ	F	F	0.001
Т	F	F	F	0.014
F	Т	F	F	0.004
Т	Т	F	F	0.002

X 1	P(X ₂ X ₁)
F	0.5
Т	0.3

X 1	X ₂	P(X	P(X ₃ X ₂ , X ₁)		
F	F		0.4		
Т	F		0.4		
F	Т		0.2		
Т	Т		0.2		
1	1	X ₂	P(X ₃ X	(₂)	
		F	0.4		
		Т	0.2		

$$\boldsymbol{p}(\mathbf{x}) = \prod_{k=1}^{K} \boldsymbol{p}(\boldsymbol{x}_k | \text{parents}_k)$$

Conditional Probability Tables

Factorization

- Consider the joint probability of our example
 - The full p(R, A, K, H) is complex
 - What can we do to simplify?
 - Notice that A and K are independent given R
- Factor the joint probability according to the graph
 - p(R, A, K, H) = p(H | A, K) p(A | R) p(K | R) p(R)
 - This is much simpler to compute, with fewer conditional probabilities track.

Conditional Probability Tables

- Graph provides a problem structure that indicates relationships
- We use this structure to break down the problem into many local problems
- What is P(A=T | H=T)?
 - Probability of ankle injury, given a trip to the hospital
 - Break down using the network and CPTs

$$p(A = T \mid H = T) = \frac{p(A = T, H = T)}{p(H = T)} = \frac{\sum_{r,k} p(R = r, K = k, A = T, H = T)}{\sum_{r,k,a} p(R = r, K = k, A = a, H = T)}$$

Observed Variables

- Variables are either
 - Observed- we observe values in data
 - Hidden- we cannot see values in data
- Indicate observed variables by shading
- Compute the remaining probabilities given shaded value

Plate Notation

- Plates in graphical models
 - When many variables have same structure, we replace them with a plate
 - The plate indicates repetition

- There are N days
- Did Avery go to the hospital on any day?

Let's consider a new model

• A model where we have label Y and example X

- At test time there's no Y
 - Estimate Y using X
- What model is this?

Naïve Bayes

- Generative Story
 - Generate a label Y
 - Given Y, generate each feature X independently
- Learning
 - We observe X and Y, maximum likelihood solution
- Prediction
 - Compute most likely value for Y given X

Factorization

Conditional Probability Tables

Argmax Derivation

Learning

- We assumed both examples (X) and labels (Y) for learning naïve Bayes
 - Maximum likelihood solution
 - Each entry in table are based on counts
- What if we only have X?
 - Can use EM!

$$\max P(X) = \sum_{y \in Y} P(Y, X)$$

- Unsupervised NB: clustering
- Some labels: semi-supervised NB

- What is p(x|y)?
 - Probability of generating example x given that it has label y
- How hard is this?
 - Remember that x is a vector
 - Equivalent to $p(\mathbf{x}_{i1}, \mathbf{x}_{i2}, \mathbf{x}_{i3} \dots \mathbf{x}_{iM} \mid \mathbf{y}_i)$
 - Assuming binary features and binary label, how many parameters do we need?
 - 2 * (2^M-1) parameters!
 - (2^M-1) combinations for x
 - 2 labels

- Random variable X is conditionally independent of Y given Z if the probability of each is independent given Z
- p(x,y|z) = p(x|z)p(y|z)
- p(x | z, y) = p(x | z)
- Example
 - X: I need an umbrella and Y: the ground is wet
 - Not independent!
 - If ground is wet, it's probably raining and I'll need an umbrella
 - I am told it is raining; knowing this, the probability that I need an umbrella is independent of the ground being wet
 - I gain no new information knowing that the ground is wet
 - P(x | z, y) = p(x, z)

- Assume each feature in x is independent given y
 - Once I know y each feature in x is independent
- Why is this helpful?

$$\boldsymbol{p}(\boldsymbol{x}_i \mid \boldsymbol{y}_i) = \prod_{j=1}^{M} \boldsymbol{p}(\boldsymbol{x}_{ij} \mid \boldsymbol{y}_i)$$

• This is a naïve assumption (it's very unlikely)

- How to estimate $p(x_{ij} | y_i)$?
 - Lots of data: every time feature x_{ij} occurs with y_i
- How many parameters do I need?
 - Before: 2 * (2^M-1)
 - Now: 2 * M
 - One parameter for each of M features
- It's much easier to learn a smaller number of parameters

Naïve vs. Reality

- Positive: we now can parameterize our model
- Reality: naïve assumption very unlikely to be true
- Example:
 - Document classification: sports vs. finance
 - Each word in a document is a feature
 - Naïve assumption: once I know the topic is sports, every word is conditionally independent
 - Not true! Would be grammatically nonsense.

Naïve Assumptions vs. Reality

- Naïve approach often works well in practice
- Caution: features that are too dependent are difficult for model
 - Create features that are minimally dependent
 - Limits the expressiveness of features

Making more realistic assumptions

- Naïve Bayes makes assumptions
 - Features (X) conditionally independent given label (Y)
- What would be a more realistic assumption?
- How does independence fit in graphical models?

Independence

- The best part of graphical models is what they do not show
- Consider the network
- A and B are independent
 - P(A,B) = P(A) P(B)

- Variable independence allows us to build efficient models
 - Recall discussion on Naïve Bayes

- We can read it from the paths of the graph!
- No mathematical trickery needed

- Are A and B independent?
 - Clearly not. Both depend on C
- Are A and B conditionally independent?
 - Yes. Why?
 - The connection of A and B to C is "tail-to-tail"
 - Creates a dependence
 - Conditioning on C "blocks the path" between A and B

В

В

Α

- Are A and B independent?
 - No. A cause C which causes B

- Are A and B conditionally independent?
 - Yes. Why?

- The connection of A and B to C is "head to tail"
 - Creates a dependence
- When we condition on C, it blocks the path between A and B

- Are A and B independent?
 - Yes. A and B are generated without common parents

- Are A and B conditionally independent given C?
 - No. Why?
 - The connection of A and B to C is "head-to-head"
 - Creates a dependence when C is observed
 - When C is unobserved, the path is **blocked**
 - When C is observed, the path becomes **unblocked**

Blocked vs. Unblocked?

- Terminology: y is a descendent of x if there is a path from x to y (following the arrows)
- Tail-to-tail or head-to-tail node only blocks a path when it is **observed**
- A head-to-head node blocks a path when it is **unobserved**
 - A head-to-head path will become unblocked if either node, or any of its descendents, is observed

Head-to-head dependence

- Suppose you see the grass outside is wet
- The two causes (sprinkler/rain) compete to explain the grass

Explaining Away

- This makes sense
 - The rain explained the grass, so sprinkler is now less likely
 - The rain explained away the state of the grass
 - Don't "need" to use sprinkler to explain it
- Thus, the observed head-to-head is unblocked
 - Once we know the value of C, we learn something about A and B

D-Separation

- Two nodes A and B are **d-separated** given observed node(s) C if all paths between A and B are blocked
 - Blocked paths: two arrows on the path meet head-to-tail or tail-to-tail at a node in set C
 - Or, the arrows meet head-to-head at a node which isn't in C
 - And none of its descendants are either
- If two (sets of) nodes are d-separated they are conditionally-independent!

Are A and B d-separated?

C is a descendent of head to head E F is a tail to tail node

Are A and B d-separated?

A F B C Yes

F is a tail-to-tail node

E is head-to-head

Isolating Nodes

- How do we isolate a variable in the graph?
 - We know how to make it conditionally independent
 - We want to experiment with a variable in isolation
 - We don't want to enumerate all possible values of the whole network

Markov Blanket

- The Markov blanket of a node is the minimal set of nodes that isolates it from the graph
 - A node conditioned on its Markov blanket is independent from all other nodes in the graph
- What nodes are in the blanket for X?
 - Think about d-separation
 - All of them!
 - A Markov blanket depends on the parents, children, and co-parents

Graphical representation of a Gaussian mixture model for a set of N i.i.d. data points $\{x_n\}$, with corresponding latent points $\{z_n\}$, where n = 1, ..., N.

Graphical Representation

Return to Naïve Bayes

$$\arg\max_{y\in\{1...k\}} p(y, x_1 \dots x_d) = \arg\max_{y\in\{1...k\}} \left(q(y) \prod_{j=1}^d q_j(x_j|y) \right)$$

Maximum Likelihood Estimate for NB

 Suppose I have ten emails: one is spam (y=1) and nine are not (y=0)

• What's the MLE for p(y)?

Maximum Likelihood Estimate for NB

- Suppose I have only two emails:
 - Spam: "you win jackpot"
 - Not: "how are you"
- What is p("jackpot" | y)?

Y	p("jackpot"=1 Y)	Y	p("you"=1 Y)
Spam	0.33	Spam	0.33
Not	0.0	Not	0.33

Smoothing the MLE

Y	p("jackpot"=1 Y)
Spam	2/4
Not	1/4

$$\arg\max_{y\in\{1...k\}} p(y, x_1 \dots x_d) = \arg\max_{y\in\{1...k\}} \left(q(y) \prod_{j=1}^d q_j(x_j|y) \right)$$

Maximum Likelihood Estimate for NB

- Suppose I have eleven emails: one is spam and nine are not one is unlabeled
- What's the MLE for q(y)?

Maximum Likelihood Estimate for NB

- Suppose I have only two emails:
 - Spam: "you win jackpot"
 - Not: "how are you"
- What is p("jackpot" | y)?

Y	p("jackpot"=1 Y)	Y	p("you"=1 Y)
Spam	0.33	Spam	0.33
Not	0.0	Not	0.33

Expectation Maximization for Naïve Bayes

$$p(\underline{x}) = \sum_{y=1}^{k} p(\underline{x}, y) = \sum_{y=1}^{k} \left(q(y) \prod_{j=1}^{d} q_j(x_j | y) \right)$$

E-Step:
$$\delta(y|i) = p(y|\underline{x}^{(i)}; \underline{\theta}^{t-1}) = \frac{q^{t-1}(y) \prod_{j=1}^{d} q_j^{t-1}(x_j^{(i)}|y)}{\sum_{y=1}^{k} q^{t-1}(y) \prod_{j=1}^{d} q_j^{t-1}(x_j^{(i)}|y)}$$

M-Step:
$$q^t(y) = \frac{1}{n} \sum_{i=1}^n \delta(y|i) \quad q_j^t(x|y) = \frac{\sum_{i:x_j^{(i)}=x} \delta(y|i)}{\sum_i \delta(y|i)}$$

http://www.cs.columbia.edu/~mcollins/em.pdf

Can we make weaker assumptions?

Y	p("jackpot"=1 Y)
Spam	
Not	

Υ	X _i	p(X _{i+1} ="win" X _i , Y)
1	"you"	
0	"you"	
1	"packers"	
0	"packers"	