Graphical Models

Zach Wood-Doughty and Bryan Pardo
CS 349 Fall 2021

Some slides taken from Mark Dredze
And inspired by Kevin Murphy
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* Some models we’ve considered have a probabilistic interpretation

Probabilistic Models

* Linear Regression
* @Gaussian Mixture Models
* No formal language to talk about models
* We've described the models and given intuition
* Example: Gaussian Mixture Models
* Assume that we first select a cluster

*  We then generate an example | |
(features) given the cluster E . e
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* How can we describe this model formally?




Example Probabilistic System

* A collection of related binary random variables

* Each day with some probability, a runner Avery:
* Goesforarun
e Sprains an ankle
* Injuries their knee
* Goes to the hospital

Given a sprained ankle, what’s the probability Avery goes to the
hospital?

What is the probability that Avery injuries their knee and goes to
the hospital?

etc



Example

* How do we answer these questions?
 What is the structure of these variables?
* What probabilities do | need to compute?
* Are any of the variables independent of each other?

* How can we represent the variables in a way that
answers these questions?



Graphical Models
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Graphical Models

* Combination of probability theory and graph theory
* Combines uncertainty (probability) and complexity (graphs)
* Represent a complex system as a graph
e Gives modularity
» Standard algorithms for solving graph problems
* Many ML models can be framed as graphical models
* Logistic regression, linear Regression, GMM.s, etc.



Representation

* A probabilistic system is encoded as a graph

* Nodes
 Random variables
e Could be discrete (this lecture) or continuous

* Edges
Connections between two nodes )

* Indicates a direct relationship between two random variables

* Note: the lack of an edge is very important
* No direct relationship



Graph Types

* Edge type determines graph type
* Directed (acyclic) graphs
* Edges have directions (A -> B)
e Assume DAGs (no cycles)
* Typically called Bayesian Networks
* Popularin Al and stats

* Undirected graphs
* Edges don’t have directions (A — B) ° Q

e Typically called Markov Random Fields (MRFs)
* Popularin physics and vision



Directed Graphs

* The direction of the edge indicates causation

A causes B

 Causation can be very intuitive
*  We may know which random variable causes the other
e Use this intuition to create a graph structure



Example

Generative Model The Generative Story



Advantages?

* What have we gained with this representation?
* We could just draw a graph where everything is connected

VS.




Factorization

* Consider the joint probability of our example

 What is the size of the conditional probability table for the
P(R, A, K, H) distribution?

 What can we do to simplify?
* Notice that A and K are independent given R @



Product Rule

e Can use the product rule to decompose joint probabilities
* pla,b,c) = plc|a,b) p(a,b)
* pla,b,c) = plc|a,b) p(b|a) p(a)

* This is true for any distribution

e Same for K variables

POX-ee X)) = (X | Xeee X p) - POX [ X) PUX)



Recall: independence

* The probability | eat pie today is independent of the
probability of a blizzard in Japan.

* This is DOMAIN knowledge, typically supplied by the
problem designer

*Independence implies:

Al B=p(A|B)=p(4)
ALB|[C=p(4,B|C)=pA|C)p(B|C)

Zach Wood-Doughty and Bryan Pardo, CS349 Fall 2021



How does independence help?

ALB=p(A|B)=p(A)

A B P(A, B)
F F 0.56
T F 0.24
F T 0.14
T T 0.06

p(A) — Zp(Av B)

B
= p(A, B) + p(A,—B)
= 0.24 + 0.06 = 0.3
p(A, B)
MAB)__MB)
__p(A,B)
ZAP(A7 B)
p(A, B)

- p(A,B) +p(—A, B)
~ 0.06

~ 0.06+0.14
=0.06/0.2=0.3

AL B|C=pA,B|C)=pA]|C)p(B|C)



Conditional Independence

 Random variable X is conditionally independent of Y given Z if
the probability of each is independent given Z
* p(x,ylz) = p(x|z)p(y|z)
* p(x|z,y) =plx | 2)
* Example
 X:lneed an umbrella and Y: the ground is wet
* Not independent!
* |If ground is wet, it’s probably raining and I'll need an umbrella

* lam told it is raining; knowing this, the probability that | need an
umbrella is independent of the ground being wet

* | gain no new information knowing that the ground is wet
* P(x|zyvy)=plx 2)



Factorization

* For any graphical model we can write the joint distribution using
conditional probabilities

* We just need conditional probabilities for a node given its

parents
K
o) = | | p(x, | parents,) @
k=1



Counting parameters in CPTs

X, | X% | « [xu| PX)
FlF]F]F| ooo Po) X | %o | PUG 1 X5 Xa)
TI|FIF[F]| 0014 - t T 0.4
FIT|F|F]| 0004 x. | P0G X0 l E 8-2
T T[] F[F] 0002 F 05 -
T 0.7
0.3

K
p(X) = l_[ p(X, | parents, )

k=1



Counting parameters in CPTs

X1 | X2 Xw| P(X)
FIF|F]|]F[ 0001
TI|F|F]F]|] 0014
FI1 T|F ] F | 0004
T T F|F/[ 0002
K
p(X) = l_[ p(X, | parents, )
k=1

P(X,)
5
X1 P(X; | X4)
F 0.5
T 0.3

X1 | Xo | P(Xs | X5, Xa)
F|F 0.4
T|F 0.4
FyT 0.2
T T —
X2 | P(Xs|X)
F 0.4
0.2




Conditional Probability Tables

* The CPTs specify the
conditional probability
distribution at each node

* CPTs reflect local
information only

R | P(A=T)
0.05
0.2

P(R=T)

P(K=T)

0.01

0.1

P(H=T)

0.3

—A ||| >

—A ||| R
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Factorization

* Consider the joint probability of our example @
* The full p(R, A, K, H) is complex

* What can we do to simplify? @ w
* Notice that A and K are independent given R

* Factor the joint probability according to

the graph @
* p(R, A K, H)=p(H [ AK)p(A | R) p(K | R) p(R)

* This is much simpler to compute, with fewer conditional
probabilities track.



Conditional Probability Tables

* Graph provides a problem structure that indicates relationships

* We use this structure to break down the problem into many local
problems

 What is P(A=T | H=T)?
* Probability of ankle injury, given a trip to the hospital
* Break down using the network and CPTs

DA—T H— Cp(R=r K=k A=T,H=T
pA=T|H=T)= PA=TH=T) _ 2. o7 )
p(H=T) Y>osaPIR=r K=k A=a H=T)




Observed Variables

* Variables are either
* Observed- we observe values in data
* Hidden- we cannot see values in data
* Indicate observed variables by shading

* Compute the remaining probabilities
given shaded value



Plate Notation

* Plates in graphical models

When many variables have same structure, we replace them

with a plate
The plate indicates repetition

There are N days
Did Avery go to the hospital on any day?

N

N\ £



Let’s consider a new model

A model where we have label Y and example X

SO ™

040

e At test time there’'sno Y @
* Estimate Y using X

* What model is this? f




Nalve Bayes

* Generative Story

* Generate a label Y

* GivenY, generate each feature X independently
* Learning

* We observe X and Y, maximum likelihood solution
* Prediction

* Compute most likely value for Y given X

O,




Factorization

P(y,x)= (x| y)P(y)

- [P 1nP)

O50




Conditional Probability Tables

* The parameters correspond to CPTs

P(Y=0)

P(V=1)

A

6

K parameters (K-1)

KM parameters

Y | P(X=0) P(X=1)
0 2 8
1 6 4
M Tables



Argmax Derivation

Omap = arg m@axp(ﬁ | X, y)

M
=logp(y | 0) +logp(d) + » logp(X; | y,0)

P(Y=0)

P(V=1)

A

6

7=1

Y| P(X=0) | P(X=1)
ol 2 3

1| 6 4




Learning

* We assumed both examples (X) and labels (Y) for
learning naive Bayes
* Maximum likelihood solution
* Each entryin table are based on counts

* What if we only have X?

e Can use EM! maxP(X)=EP(Y,X)
yEY

e Unsupervised NB: clustering
* Some labels: semi-supervised NB




Conditional Independence

 What is p(x]|y)?
* Probability of generating example x given that it has label y
* How hard is this?
* Remember that x is a vector
* Equivalent to P( X5 Xigs Xiz oo Xipg | V1)
* Assuming binary features and binary label, how many
parameters do we need?
e 2 *(2M-1) parameters!
(2M-1) combinations for x
2 labels



Conditional Independence

 Random variable X is conditionally independent of Y given Z if
the probability of each is independent given Z
* p(x,ylz) = p(x|z)p(y|z)
* p(x|z,y) =plx | 2)
* Example
 X:lneed an umbrella and Y: the ground is wet
* Not independent!
* |If ground is wet, it’s probably raining and I'll need an umbrella

* lam told it is raining; knowing this, the probability that | need an
umbrella is independent of the ground being wet

* | gain no new information knowing that the ground is wet
* P(x|zyvy)=plx 2)



Conditional Independence

* Assume each feature in x is independent given y
* Once |l know y each feature in x is independent
* Why is this helpful?

CAE Hp( 1Y)

 This is a naive assumption (it’s very unllkely)



Conditional Independence

* How to estimate }XXU | y,)?
* Lots of data: every time feature x; occurs with y,
* How many parameters do | need?
* Before: 2 * (2M-1)
* Now:2*M
* One parameter for each of M features
* It’s much easier to learn a smaller number of parameters



Naive vs. Reality

* Positive: we now can parameterize our model
* Reality: naive assumption very unlikely to be true
* Example:
* Document classification: sports vs. finance
* Each word in a document is a feature

* Naive assumption: once | know the topic is sports, every word
is conditionally independent

* Not true! Would be grammatically nonsense.



Naive Assumptions vs. Reality

* Naive approach often works well in practice

e Caution: features that are too dependent are
difficult for model

* Create features that are minimally dependent
* Limits the expressiveness of features



Making more realistic assumptions

* Naive Bayes makes assumptions
 Features (X) conditionally independent given label (Y)

* What would be a more realistic assumption?
* How does independence fit in graphical models?



Independence

* The best part of graphical models is what they do not show

e Consider the network

A and B are independent @

* P(A,B) =P(A) P(B)
* Variable independence allows us to build efficient models

e Recall discussion on Naive Bayes



Conditional Independence G

* Are Knee and Ankle independent?
* No, but they are conditionally independent

given Run
* P(Knee, Ankle | Run)

= p(Knee | Run) p(Ankle | Run)
* Once we know whether Avery ran, no
information about ankle injuries will inform us
about knee injuries

* How do we know if something is independent?

 We can read it from the paths of the graph!
* No mathematical trickery needed



Example 1

* Are A and B independent? °

* Clearly not. Both depend on C
* Are A and B conditionally independent?

* Yes. Why? °

e The connection of A and B to C is "tail-to-tail"

* Creates a dependence
* Conditioning on C “blocks the path" between A and B G



Example 2

* Are A and B independent?

No. A cause C which causes B
* Are A and B conditionally independent?

* The connection of A and B to Cis "head to tail"
* Creates a dependence
* When we condition on C, it blocks the path between A and B



Example 3

* Are A and B independent? ° °

* Yes. A and B are generated without
common parents e

* Are A and B conditionally independent given C?
* No. Why?
* The connection of A and B to Cis "head-to-head"
* Creates a dependence when C is observed
* When Cis unobserved, the path is blocked
* When Cis observed, the path becomes unblocked



Blocked vs. Unblocked?

* Terminology: y is a descendent of x if there is a path from xtoy
(following the arrows)

* Tail-to-tail or head-to-tail node only blocks a path when it is observed
* A head-to-head node blocks a path when it is unobserved

* A head-to-head path will become unblocked if either node, or
any of its descendents, is observed



Head-to-head dependence

* Suppose you see the grass outside is wet

* The two causes (sprinkler/rain) compete
to explain the grass



Explaining Away

* This makes sense
* The rain explained the grass, so sprinkler is now less likely
* The rain explained away the state of the grass
 Don’t "need" to use sprinkler to explain it

* Thus, the observed head-to-head is unblocked
« Once we know the value of C, ° e
we learn something about A and B



D-Separation

* Two nodes A and B are d-separated given observed
node(s) Cif all paths between A and B are blocked

* Blocked paths: two arrows on the path meet head-to-tail or
tail-to-tail at a node in set C

* Or, the arrows meet head-to-head at a node which isn’t in C
* And none of its descendants are either

* If two (sets of) nodes are d-separated they are
conditionally-independent!



Are A and B d-separated?

E ) ©
© ©
No Yes

Cis a descendent of F is a tail to tail node
head to head E




Are A and B d-separated?

E e
@

Yes

F is a tail-to-tail node

E is head-to-head



Isolating Nodes

* How do we isolate a variable in the graph?
* We know how to make it conditionally independent
* We want to experiment with a variable in isolation

* We don’t want to enumerate all possible values of the
whole network



Markov Blanket

* The Markov blanket of a node is the minimal set of
nodes that isolates it from the graph

* A node conditioned on its Markov blanket is independent
from all other nodes in the graph

* What nodes are in the blanket for X?
* Think about d-separation ° e
 All of them!

* A Markov blanket depends on the
parents, children, and co-parents G 0



Graphical Representation

T
Cluster 2

Cluster 1

Cluster 3
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Graphical representation of a Gaussian mixture model
for a set of N i.i.d. data points {x,, }, with corresponding
latent points {z, }, where n =1,..., N.



Graphical Representation
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Return to Nalve Bayes

q(Y=1)

.6

a(Xi=1 ] Y)

8

A

arg max p(y,Ti...xrq) = arg

ye{l...k}

max
ye{l...k}

M Tables

2*M parameters

d
<Q(y) 1:[ qj(iﬁjy))



Maximum Likelihood Estimate for NB

* Suppose | have ten emails:
one is spam (y=1) and nine are not (y=0)

* What'’s the MLE for p(y)?

p(spam)

0.1




Maximum Likelihood Estimate for NB

* Suppose | have only two emails:
e Spam: “you win jackpot”
* Not: “how are you”

* What is p(“jackpot” | y)?

Y p(“jackpot”=1 | Y) Y p(“you”=1 | Y)
Spam 0.33 Spam 0.33
Not 0.0 Not 0.33




Smoothing the MLE

Y p(“jackpot”=1 | Y)

Spam 2/4

Not 1/4

||::]&

ye{l..k} ye{l...k}

w]@)

arg max p(y,Ti...Trq) = arg max (



Maximum Likelihood Estimate for NB

* Suppose | have eleven emails:
one is spam and nine are not
one is unlabeled

* What'’s the MLE for g(y)?

q(Y=

1)




Maximum Likelihood Estimate for NB

* Suppose | have only two emails:
e Spam: “you win jackpot”
* Not: “how are you”

* What is p(“jackpot” | y)?

Y p(“jackpot”=1 | Y) Y p(“you”=1 | Y)
Spam 0.33 Spam 0.33
Not 0.0 Not 0.33




Expectation Maximization for Naive Bayes

k k d
p(z) =) plz,y) = Z( H ﬂfgy)
y=1 y=1 J=1
) Tl 4 1($§)!y)

E-Step: 0(y|i) = p(ylz®; 0171) =

Sk g y) T ¢ @)

> @_ 0(yli)

za;

Zi5(y’ )

1 n
M-Step:  ¢'(y) HZ (yli)  qj(zly) =

http://www.cs.columbia.edu/~mcollins/em.pdf



Can we make weaker assumptions?

OLO0MO,

o

-0

Y

p(“jackpot”=1 | Y)

Spam

Not

Y X; p(X;.,=“win” | X;, Y)
1 “you”

0 "you”

1 | “packers”

O | “packers”




