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Supervised Machine Learning in one slide

1. Pick data X, labels Y,  model M(𝜽) and loss function L(𝐗, 𝐘; 𝜽)

2. Initialize model parameters 𝜽, somehow

3. Measure model performance with the loss function L(𝑿, 𝒀; 𝜽)

4. Modify parameters 𝜃 somehow, hoping to improve L(𝑿, 𝒀; 𝜽)

5. Repeat 3 and 4 until you stop improving or run out of time

HOW?



A common approach to picking the next parameters

1. Measure how the the loss changes when  we change the 
parameters 𝜃 slightly 

2. Pick the next set of parameters to be close to the current set, but in 
the direction that most changes the loss function for the better

3. Repeat

HOW?



Slope vs gradient 

• Slope of 𝑓(𝜃) is a scalar 
describing a line perpendicular 
to the tangent of the function at 
that point .

• Gradient 𝛻𝑓(𝛉) is a vector 
describing a hyperplane 
perpendicular to the tangent at 𝛉



What does the gradient tell us?
• If the loss function and hypothesis function encoded by the model are 

differentiable* (i.e., the gradient exists)
• We can evaluate the gradient for some fixed value of  our model 

parameters 𝜃 and get the direction in which the loss increases fastest

*or subdifferentiable



What does the gradient tell us?
• We want to decrease our loss, so let’s go the other way instead



Gradient Descent: Promises & Caveats

• Much faster than guessing new parameters randomly
• Finds the global optimum only if the objective function is convex
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𝜃 : the value of some parameter



Gradient Descent Pseudocode

Initialize 𝜃(")

Repeat until stopping condition met:
𝜃($%&) = 𝜃($) − 𝜂∇𝐿(𝑋, 𝑌; 𝜃($))

Return 𝜃($!"#)

𝜃(") are the parameters of the model at time step t

𝑋, 𝑌 are the input data vectors and the output values.

∇𝐿(𝑋, 𝑌; 𝜃(")) is the gradient of the loss function with respect to model parameters 𝜃(")

𝜂 controls the step size

𝜃("!"#) is the set of parameters that did best on the loss function.



Design choices

Initialize 𝜃(")

Repeat until stopping condition met:
𝜃($%&) = 𝜃($) − 𝜂∇𝐿(𝑋, 𝑌, 𝜃($))

Return 𝜃($!"#)

• Initialization of 𝜃
• Convergence criterion (i.e. when to stop)
• How much data to use (batch size)
• Step size for updating model parameters
• Choosing a loss function



Parameter Initialization
Common initializations:
• 𝜃(") = 0
• 𝜃(") = random values

What happens if our initialization is bad?
• Convergence to a local minimum
• No way to determine if you’ve converged to 

the global minimum

If we start here

We could end here



Convergence criterion: when to stop

• Stop when the gradient is close (within 𝜀) to 0
(i.e., we reached a minimum)

• Stop after some fixed number of iterations

• Stop when the loss on a validation set stops decreasing 
(This helps prevent overfitting)



Batch Size: How much data?
• Call D the set of X,Y pairs we measure loss on 

• In batch gradient descent, the loss is a function of both the 
parameters 𝜃 and the set of all training data D.                                    
(What if if |D| > memory?)

• In stochastic gradient descent, loss is a function of the parameters 
and a different single random training sample at each iteration. 

• In mini-batch gradient descent, random subsets of the data (e.g. 100 
examples) are used at each step in the iteration. 



Different data, different loss
• Call D the set of X,Y pairs we measure loss on. 
• If D changes, then the landscape of the loss function changes
• You typically won’t know how it has changed.

𝐃$ 𝐃%

Lo
ss

 L
(𝑋
,𝑌
;𝜃

)

𝜃 : the value of some parameter



How much data to use in each step?
• All of it (batch gradient descent)

• The most accurate representation of your training loss
• It can be slow
• Not possible if data does not fit in RAM

• Just one data point (stochastic gradient descent)
• A noisy, inaccurate representation of your training loss
• very fast
• Random shuffling is important

• More than one data point, but less than all (mini-batch gradient descent)
• Most common approach today
• Balances speed and accuracy
• Random shuffling is important
• Usually want batch size to be as large as possible for your machine



Step Size: how far should we go?

• The gradient we calculated was based on a fixed value of 𝜃
• As we move away from this point, the gradient changes

If the step size is too large, we may 
overshoot the minimum

If the step size is too small, we need to 
take more steps (more computation)



Add Momentum

Initialize 𝜃("), 𝑉(")

Repeat until stopping condition met:
𝑉($%&) = 𝑚𝑉($) − 𝜂∇𝐿(𝑋, 𝑌, 𝜃($))
𝜃($%&) = 𝜃($) + 𝑉 $%&

Return 𝜃($!"#)



There are many variants on gradient descent

• Lots of kinds of momentum/step size selection algorithms (e.g.
ADAM)

• Lots of 2nd order algorithms (e.g. BGFS)

• This is an entire field of study.

• Check out classes taught in IEMS on this.



Loss functions



A good objective (loss) function L(X, Y; 𝜃)

L(X, Y; 𝜃) ≥ 0

L(X, Y; 𝜃) decreases as performance improves

L(X, Y; 𝜃) is differentiable*, with respect to 𝜃

The gradient of 𝐿 is bounded… 𝟎 < 𝛻𝐿 ≪ ∞

Required

Required
for gradient 
descent

helpful
For gradient
descent

data parameters
labels

*or subdifferentiable



Notational conventions
D is the total number of dimensions
d is the current dimension

𝐰 is the D dimensional model weight vector (i.e. the model parameters 𝜃)
𝑤$ is the model weight for dimension d

𝐱 is one D dimensional input example
𝑥$ is the value for 𝐱 at dimension d
X  is a set of examples 
𝐱𝒊 is the ith example in X   (note the boldface and use of i instead of d).

𝑦 is one scalar label, drawn from {+1, -1}
Y  is a set of labels
𝑦& is the ith example in Y.



g(x) = w0 +w1x1 +w2x2 = 0

g(x) > 0g(x) < 0

SSE is same everywhere in the blue
Gradient 0  in the blue region!

Example: 0 1 loss

𝐿 𝑋, 𝑌,𝐰 = $
%&
∑'($& (𝑦' − 3𝑦')𝟐

ℎ 𝐱 = 6 1 𝑖𝑓 0 < 𝐰*𝐱
−1 𝑒𝑙𝑠𝑒

3𝑦 = ℎ 𝐱

Our linear model

Our hypothesis function

Our label estimate

Sum of squared errors loss



The 0 1 Loss function 

• Loss = 1 if 𝑦 ≠ ℎ(𝑥), else it’s 0

• A count of mislabeled items

• Results in a step function 

• Not useful for for gradient descent

𝐿(
𝑋
,𝑌
,𝐰

)

𝑤+



Perceptron Problem: The step function

𝐰!𝐱

ℎ 𝐱

ℎ 𝑥 = ) 1 𝑖𝑓 0 < 𝐰6𝐱
−1 𝑒𝑙𝑠𝑒



Solution: Remove the step function

ℎ 𝐱 = 𝐰!𝐱

𝐰!𝐱

ℎ 𝐱



Squared loss: we now have a gradient

• Our hypothesis function is now 
ℎ 𝐱 where 𝐰 are the model parameters.

•We write our loss function as..

• If we use a linear model, then..
ℎ 𝐱 =𝐰!𝐱

𝑦ℎ 𝐱

𝐿 𝑋, 𝑌,𝐰 = $
%&
∑'($& (𝑦' − 3𝑦')𝟐

𝐿(
𝑋
,𝑌
,𝐰

)



A simple example: where do you draw the line?
Happy faces have label y = +1 and sad faces have label y = -1.

We have a linear model with 2 parameters: 3𝑦 = 𝐰*𝐱 = 𝑤"𝑥" +𝑤$𝑥$
Our loss function will be sum-of-squared-errors: 

0
How does the loss change as we move the line defined by 𝒘𝟎 ?
Can we use that to decide where to move it?
What does 𝒘𝟏 do? 

𝒘𝟎

𝐿 𝑋, 𝑌,𝐰 = $
%&
∑'($& (𝑦' − 3𝑦')𝟐



Measuring loss for a linear unit
•Model’s hypothesis ℎ 𝐱 function outputs a label estimate =𝑦, 

given its parameters 𝜃. Let’s call them the weights, 𝐰.

• Sum of squared errors loss function:

5𝑦 = ℎ 𝐱 = 𝐰6𝐱

𝐿 𝑋, 𝑌,𝐰 =
1
2𝑁<

?@A

B

(𝑦? − 5𝑦?)𝟐

This ½ makes the 
derivative simpler 

𝑖 is the index to the ith
example 𝐱! and its label 𝐲!



If we consider a single example, then…

𝐿 𝑋, 𝑌,𝐰 =
1
2𝑁

I
"#$

%

(𝑦" − =𝑦𝒊)𝟐

𝐿 𝐱, 𝑦,𝐰 =
1
2 (𝑦 − +𝑦)𝟐

Setting the number of data points N = 1 results in…

The example x is a D dimensional vector
The model weights w are also D dimensional
Our label y is a scalar



For each dimension d, take the partial derivative

𝜕𝐿
𝜕𝑤+

=
𝜕𝐿
𝜕 3𝑦

𝜕 3𝑦
𝜕𝑤+

gives the change of our loss function 𝐿 with respect to weight 𝑤$

Our loss function is : 𝐿 = $
(
(𝑦 − =𝑦)𝟐

= )!

(
+ *)!

(
− 𝑦=𝑦

therefore…                +,
+ *)
= =𝑦 − 𝑦



For each dimension d, take the partial derivative

𝜕𝐿
𝜕𝑤+

=
𝜕𝐿
𝜕 3𝑦

𝜕 3𝑦
𝜕𝑤+

gives the change of our loss function 𝐿 with respect to weight 𝑤$

From the previous slide.…           +,
+ *)
= =𝑦 − 𝑦

Our estimator is a linear unit :     =𝑦 = 𝐰!𝐱

therefore…                                     +,
+ *)
= 𝐰!𝐱 − 𝑦



Let’s calculate L =M
LN'

Our estimator is :     =𝑦 = 𝐰!𝐱 = 𝑤-𝑥-+… 𝑤.𝑥. +… 𝑤/𝑥/
Now… 𝑤. is the only parameter we’re varying right now.

So all 𝑤0 where 𝑗 ≠ 𝑑 are constant in this partial derivative.

Therefore, + *)
+1"

= 𝑥.

D is the total number of dimensions
d is the current dimension
𝐰 is the D dimensional model weight vector
𝐱 is the D dimensional input example 
𝑤" is the model weight for dimension d
𝑥" is the value for 𝐱 at dimension d



The gradient for weight d is…

𝜕𝐿
𝜕𝑤.

=
𝜕𝐿
𝜕 =𝑦

𝜕 =𝑦
𝜕𝑤.

= 𝐰!𝐱 − 𝑦 𝑥.
= − 𝑦 −𝐰!𝐱 𝑥.

So the gradient of the loss for all D weights is…

∇𝐿(𝐱, 𝑦,𝐰) =
𝜕𝐿
𝜕𝑤"

, …
𝜕𝐿
𝜕𝑤(

, …
𝜕𝐿
𝜕𝑤)

= − 𝑦 −𝐰*𝐱 𝐱



We can now estimate the gradient for a whole set

∇𝐿(𝑋, 𝑌,𝐰) =
1
𝑁B

+,&

-

∇𝐿(𝐱+ , 𝑦+ , 𝐰)

X and Y are the set of examples and labels. 
N is the number of examples.
𝐱" , 𝐲" are a single pair of example and label.



The gradient can now be used here

Initialize 𝜃(")

Repeat until stopping condition met:
𝜃($%&) = 𝜃$ − 𝜂∇𝐿(𝑋, 𝑌; 𝜃($))

Return 𝜃($!"#)

𝜃(") are the parameters of the model at time step t.  

(𝑁𝑂𝑇𝐸: 𝜃(") corresponds to the model weights w from the prev. slide)



Hinge Loss

• Loss only >0 if the data 
is within 1 of the wrong 
side of the line.

𝐿 𝑋, 𝑌,𝐰 =
1
𝑁
I
"#$

%

𝑚𝑎𝑥(0, 1 − 𝑦"ℎ(𝐱𝒊))

𝑦&ℎ(𝐱𝒊)

𝐿(
𝑋
,𝑌
,𝐰

)



Hinge Loss Gradient

Let’s calculate its gradient with a linear model: ℎ2 𝑥 = 𝐰!𝐱

As we did for squared error, let’s consider a single example:

𝐿 𝐱, 𝑦,𝐰 = max 0, 1 − 𝑦𝐰!𝐱

Put	another	way…..

𝐿 𝐱, 𝑦,𝐰 = a 0 if 𝑦𝐰!𝐱 > 1
1 − 𝑦𝐰!𝐱 else

The loss function is: 𝐿 𝑋, 𝑌,𝐰 =
1
𝑁
B
'($

&

𝑚𝑎𝑥(0, 1 − 𝑦'ℎ(𝐱𝒊))



Hinge Loss Gradient

The top case is where the model is returning a value that is the 
right sign (remember our labels are either +1 or -1) and far 
enough from the decision boundary that we don’t need to 
move the line. 

In this case, where (𝑦𝐰!𝐱) > 1, our loss function is 
𝐿 𝐱, 𝑦,𝐰 =0. That’s easy, the gradient must also be 0 in this 
case. So we just need to consider the other case.

From the previous slide: 𝐿 𝐱, 𝑦,𝐰 = E 0 if 𝑦𝐰*𝐱 > 1
1 − 𝑦𝐰*𝐱 else



Hinge Loss Gradient

The bottom case is where we will need to get the gradient. 
First, let’s put that case into a form where doing the math will 
be easy and obvious. 

𝐿 𝐱, 𝑦,𝐰 = 1 − 𝑦𝐰!𝐱
= 1 − 𝑦 𝑤-𝑥-+… 𝑤.𝑥. +… 𝑤/𝑥/
= 1 − 𝑦𝑤-𝑥- …−𝑦𝑤.𝑥. …− 𝑦𝑤/𝑥/

From the previous slide: 𝐿 𝐱, 𝑦,𝐰 = E 0 if 𝑦𝐰*𝐱 > 1
1 − 𝑦𝐰*𝐱 else



Hinge Loss Gradient
From prev. slide: 𝐿 𝐱, 𝑦,𝐰 = 1 − 𝑦𝑤-𝑥- …−𝑦𝑤.𝑥. …− 𝑦𝑤/𝑥/
Since 𝑤. is the only parameter we’re varying right now, all 𝑤0 where 
𝑗 ≠ 𝑑 are constant in this partial derivative. Therefore…

./
.0$

= −𝑦𝑥(

The label is the same, regardless of the dimension we’re considering.
Thus we can get the full gradient by  multiplying  y by the full vector x

∇ 𝐿 𝐱, 𝑦,𝐰 = −𝑦𝐱



Regularization
(note….the slides are back to using 𝜃 for the model parameters)



Revisiting Overfitting
• Overfitting occurs when your model begins to “memorize” the 

training data
• Can detect overfitting from an increasing gap between training and validation 

loss.
• Performance on the training set improves, but performance on the validation 

set does not.



Revisiting Overfitting: Regularization
• Big idea (Occam’s Razor) – Given two models with equal 

performance, prefer the simpler model.
• E.g., models with fewer parameters or smaller coefficients

• Regularization can be applied to any loss function

• The amount of regularization is controlled by the 
hyperparameter 



L1- and L2-regularization
• Recall the 𝑙.-norm:

• 𝑙/-regularization penalizes high values of the 𝑙/-norm of the model parameters:

• 𝑙0-regularization penalizes high values of the 𝑙0-norm:



L1-regularization and sparsity
• L1-regularization encourages the model parameters to be sparse
• This is a form of feature selection
• Only features with non-zero coefficients contribute to the model’s prediction

• This is because the gradient of L1-regularization moves model  
parameters towards 0 at a constant rate



L1-regularization and sparsity
• The gradient of the L1-regularizer is bounded (between -1 and +1, 

inclusive) but not unique at 𝜃 = 0.
• Arbitrarily set the gradient at this point to 0.
• The resulting function is the sign function



Regularization and offset (aka bias)

• Many ML models include a bias term, b.

• Example: A linear model:

• Or equivalently, by augmenting 𝜃 and 𝑥, like we did with perceptrons…

• What happens if we regularize the bias term?



Regularization and offset (aka bias)
• Recall that “regularizing” a model parameter means  encouraging that 

model parameter to tend towards 0. 
• How would a linear model represent  horizontal line?
• How does shrinking the bias affect its ability to do so?

No bias regularization Bias regularization

Don’t regularize 
the bias term!



A familiar example
• A lot of algorithms can be constructed by simply combining a loss 

function and a regularizer

• For example, hinge loss and L2-regularization with a linear hypothesis

• Does this look like something we’ve studied?

Soft margin SVMs!



Learning a maximum margin separator via 
gradient descent

• Finding an exact solution for SVMs can be difficult
• Convex quadratic programming problem
• ~𝑂(𝑛1)

• Finding a good approximate solution for SVMs using gradient descent 
is much easier and computationally faster



Multi-class Classification



Using your linear model, once learned

• Regression:

• Binary classification:

• What about classification with more than 2 classes (e.g., C classes)? 
We will discuss 2 approaches:
• One-vs-One classification
• One-vs-All classification



One-vs-One Classification
• Train a binary classifier to disambiguate between each pair of classes
• Final prediction is the majority vote among all binary classifiers

vs

vs

vs



One-vs-One Classification
• Train a binary classifier to disambiguate between each pair of classes
• Final prediction is the majority vote among all binary classifiers

vs

vs

vs

?

2 votes for
1 vote for
-> classify as 



One-vs-All Classification
• Train a binary classifier on whether an example does or does not 

belong to a class
• Predict based on the highest confidence score (i.e., the regression 

output)
vs allvs all

vs all


