Machine Learning

Topic: Gradient Descent

Max Morrison and Bryan Pardo, EECS 349 Machine Learning, 2021

Supervised Machine Learning in one slide

1. Pick data X, labels Y, model $M(\theta)$ and loss function $L(X, Y; \theta)$

2. Initialize model parameters $\boldsymbol{\theta}$, somehow

3. Measure model performance with the loss function $L(X, Y; \theta)$

4. Modify parameters θ somehow, hoping to improve $L(X, Y; \theta)$

5. Repeat 3 and 4 until you stop improving or run out of time

A common approach to picking the next parameters

HOW?

- 1. Measure how the the loss changes when we change the parameters θ slightly
- 2. Pick the next set of parameters to be close to the current set, but in the direction that most changes the loss function for the better
- 3. Repeat

Slope vs gradient

 Slope of f(θ) is a scalar describing a line perpendicular to the tangent of the function at that point.

 Gradient ∇f(θ) is a vector describing a hyperplane perpendicular to the tangent at θ

What does the gradient tell us?

- If the loss function and hypothesis function encoded by the model are differentiable* (i.e., the gradient exists)
- We can evaluate the gradient for some fixed value of our model parameters θ and get the *direction* in which the loss *increases* fastest

*or subdifferentiable

What does the gradient tell us?

• We want to *decrease* our loss, so let's go the other way instead

Gradient Descent: Promises & Caveats

- Much faster than guessing new parameters randomly
- Finds the global optimum only if the objective function is convex

 θ : the value of some parameter

Gradient Descent Pseudocode

Initialize $\theta^{(0)}$

Repeat until stopping condition met: $\theta^{(t+1)} = \theta^{(t)} - \eta \nabla L(X, Y; \theta^{(t)})$ Return $\theta^{(t_{max})}$

 $\theta^{(t)}$ are the parameters of the model at time step t

X, Y are the input data vectors and the output values.

 $\nabla L(X, Y; \theta^{(t)})$ is the gradient of the loss function with respect to model parameters $\theta^{(t)}$

 η controls the step size

 $\theta^{(t_{max})}$ is the set of parameters that did best on the loss function.

Design choices

Initialize $\theta^{(0)}$

Repeat until stopping condition met: $\theta^{(t+1)} = \theta^{(t)} - \eta \nabla L(X, Y, \theta^{(t)})$ Return $\theta^{(t_{max})}$

- Initialization of θ
- Convergence criterion (i.e. when to stop)
- How much data to use (batch size)
- Step size for updating model parameters
- Choosing a loss function

Parameter Initialization

Common initializations:

- $\theta^{(0)} = 0$
- $\theta^{(0)} =$ random values

What happens if our initialization is bad?

- Convergence to a *local* minimum
- No way to determine if you've converged to the global minimum

Convergence criterion: when to stop

- Stop when the gradient is close (within ε) to 0 (i.e., we reached a minimum)
- Stop after some fixed number of iterations

• Stop when the loss on a *validation set* stops decreasing (This helps prevent overfitting)

Batch Size: How much data?

- Call D the set of X,Y pairs we measure loss on
- In batch gradient descent, the loss is a function of both the parameters θ and the set of all training data D. (What if if |D| > memory?)
- In **stochastic gradient descent**, loss is a function of the parameters and a different single random training sample at each iteration.
- In **mini-batch gradient descent**, random subsets of the data (e.g. 100 examples) are used at each step in the iteration.

Different data, different loss

- Call D the set of X,Y pairs we measure loss on.
- If D changes, then the landscape of the loss function changes
- You typically won't know how it has changed.

-oss L(X, Y; θ)

 θ : the value of some parameter

How much data to use in each step?

• All of it (batch gradient descent)

- The *most accurate* representation of your training loss
- It can be slow
- Not possible if data does not fit in RAM
- Just one data point (stochastic gradient descent)
 - A noisy, inaccurate representation of your training loss
 - very fast
 - Random shuffling is important
- More than one data point, but less than all (*mini-batch gradient descent*)
 - Most common approach today
 - Balances *speed* and *accuracy*
 - Random shuffling is important
 - Usually want batch size to be as large as possible for your machine

Step Size: how far should we go?

- The gradient we calculated was based on a fixed value of θ
- As we move away from this point, the gradient changes

Add Momentum

Initialize $\theta^{(0)}$, $V^{(0)}$

Repeat until stopping condition met:

$$V^{(t+1)} = mV^{(t)} - \eta \nabla L(X, Y, \theta^{(t)})$$
$$\theta^{(t+1)} = \theta^{(t)} + V^{(t+1)}$$

Return $\theta^{(t_{max})}$

There are many variants on gradient descent

- Lots of kinds of momentum/step size selection algorithms (e.g. ADAM)
- Lots of 2nd order algorithms (e.g. BGFS)
- This is an entire field of study.
- Check out classes taught in IEMS on this.

Loss functions

A good objective (loss) function
$$L(X, Y; \theta)$$

Required
$$L(X, Y; \theta) \ge 0$$

$$L(X, Y; \theta) \ge 0$$

$$L(X, Y; \theta) \text{ decreases as performance improves}$$
Required
for gradient
descent
$$L(X, Y; \theta) \text{ is differentiable}^*, \text{ with respect to } \theta$$

$$L(X, Y; \theta) \text{ is differentiable}^*, \text{ with respect to } \theta$$

$$L(X, Y; \theta) \text{ is differentiable}^*, \text{ with respect to } \theta$$

$$L(X, Y; \theta) \text{ is differentiable}^*, \text{ with respect to } \theta$$

*or subdifferentiable

Notational conventions

D is the total number of dimensions *d* is the current dimension

w is the *D* dimensional model weight vector (i.e. the model parameters θ) w_d is the model weight for dimension *d*

x is one D dimensional input example
x_d is the value for x at dimension d
X is a set of examples
x_i is the *i*th example in X (note the boldface and use of *i* instead of d).

 \mathbf{x}_i is the *i*th example in X_i (note the boldface and use of *i* instead c

y is one scalar label, drawn from {+1, -1}

Y is a set of labels

 y_i is the *i*th example in *Y*.

Example: 0 1 loss

Our linear model

$$g(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 = 0$$

Our hypothesis function

$$h(\mathbf{x}) = \begin{cases} 1 & if \ 0 < \mathbf{w}^T \mathbf{x} \\ -1 & else \end{cases}$$

Our label estimate $\hat{y} = h(\mathbf{x})$

Sum of squared errors loss $L(X, Y, \mathbf{w}) = \frac{1}{2N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$

SSE is same everywhere in the blue Gradient 0 in the blue region!

The 01 Loss function

- Loss = 1 if $y \neq h(x)$, else it's 0
- A count of mislabeled items

• Results in a step function

• Not useful for for gradient descent

Perceptron Problem: The step function

Solution: Remove the step function

 $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$

Squared loss: we now have a gradient

Our hypothesis function is now
 h(x) where w are the model parameters.

• We write our loss function as..

$$L(X, Y, \mathbf{w}) = \frac{1}{2N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

• If we use a linear model, then.. $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$

A simple example: where do you draw the line?

Happy faces have label y = +1 and sad faces have label y = -1.

We have a linear model with 2 parameters: $\hat{y} = \mathbf{w}^T \mathbf{x} = w_0 x_0 + w_1 x_1$

Our loss function will be sum-of-squared-errors:

$$L(X, Y, \mathbf{w}) = \frac{1}{2N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Measuring loss for a linear unit

• Model's hypothesis $h(\mathbf{x})$ function outputs a label estimate \hat{y} , given its parameters θ . Let's call them the weights, \mathbf{w} .

$$\hat{y} = h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$

• Sum of squared errors loss function: $L(X, Y, \mathbf{w}) = \frac{1}{2N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$ This ½ makes the derivative simpler

If we consider a single example, then...

$$L(X, Y, \mathbf{w}) = \frac{1}{2N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Setting the number of data points N = 1 results in...

$$L(\mathbf{x}, y, \mathbf{w}) = \frac{1}{2}(y - \hat{y})^2$$

The example **x** is a *D* dimensional vector The model weights **w** are also *D* dimensional Our label *y* is a scalar

For each dimension d, take the partial derivative

 $\frac{\partial L}{\partial w_d} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w_d}$ gives the change of our loss function L with respect to weight w_d

Our loss function is :
$$L = \frac{1}{2}(y - \hat{y})^2$$

$$= \frac{y^2}{2} + \frac{\hat{y}^2}{2} - y\hat{y}$$
therefore... $\frac{\partial L}{\partial \hat{y}} = \hat{y} - y$

For each dimension d, take the partial derivative

 $\frac{\partial L}{\partial w_d} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w_d}$ gives the change of our loss function L with respect to weight w_d

From the previous slide....

$$\frac{\partial L}{\partial \hat{y}} = \hat{y} - y$$

Our estimator is a linear unit : j

$$\hat{y} = \mathbf{w}^T \mathbf{x}$$

therefore...

$$\frac{\partial L}{\partial \hat{y}} = \mathbf{w}^T \mathbf{x} - y$$

Let's calculate
$$\frac{\partial \hat{y}}{\partial w_d}$$

D is the total number of dimensions d is the current dimension w is the D dimensional model weight vector x is the D dimensional input example w_d is the model weight for dimension d x_d is the value for x at dimension d

Our estimator is : $\hat{y} = \mathbf{w}^T \mathbf{x} = w_0 x_0 + \dots w_d x_d + \dots w_D x_D$

Now... w_d is the only parameter we're varying right now.

So all w_j where $j \neq d$ are constant in this partial derivative.

Therefore,
$$\frac{\partial \hat{y}}{\partial w_d} = x_d$$

The gradient for weight *d* is...

$$\frac{\partial L}{\partial w_d} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w_d} = (\mathbf{w}^T \mathbf{x} - y) x_d$$
$$= -(y - \mathbf{w}^T \mathbf{x}) x_d$$

So the gradient of the loss for all D weights is...

$$\nabla L(\mathbf{x}, y, \mathbf{w}) = \begin{bmatrix} \frac{\partial L}{\partial w_0}, \dots \frac{\partial L}{\partial w_d}, \dots \frac{\partial L}{\partial w_D} \end{bmatrix}$$

$$= -(y - \mathbf{w}^T \mathbf{x})\mathbf{x}$$

We can now estimate the gradient for a whole set

$$\nabla L(X, Y, \mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} \nabla L(\mathbf{x}_i, y_i, \mathbf{w})$$

X and Y are the set of examples and labels. N is the number of examples. $\mathbf{x}_i, \mathbf{y}_i$ are a single pair of example and label.

The gradient can now be used here

Initialize
$$\theta^{(0)}$$

Repeat until stopping condition met: $\theta^{(t+1)} = \theta_t - \eta \nabla L(X, Y; \theta^{(t)})$ Return $\theta^{(t_{max})}$

 $\theta^{(t)}$ are the parameters of the model at time step t.

(*NOTE*: $\theta^{(t)}$ corresponds to the model weights **w** from the prev. slide)

Hinge Loss

$$L(X, Y, \mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} max(0, 1 - y_i h(\mathbf{x}_i))$$

 Loss only >0 if the data is within 1 of the wrong side of the line.

The loss function is:
$$L(X, Y, \mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} max(0, 1 - y_i h(\mathbf{x}_i))$$

Let's calculate its gradient with a linear model: $h_{\theta}(x) = \mathbf{w}^T \mathbf{x}$

As we did for squared error, let's consider a single example:

$$L(\mathbf{x}, y, \mathbf{w}) = \max(0, 1 - y\mathbf{w}^T\mathbf{x})$$

Put another way.....

$$L(\mathbf{x}, y, \mathbf{w}) = \begin{cases} 0 & \text{if } y \mathbf{w}^T \mathbf{x} > 1 \\ 1 - y \mathbf{w}^T \mathbf{x} & \text{else} \end{cases}$$

From the previous slide: $L(\mathbf{x}, y, \mathbf{w}) = \begin{cases} 0 & \text{if } y \mathbf{w}^T \mathbf{x} > 1 \\ 1 - y \mathbf{w}^T \mathbf{x} & \text{else} \end{cases}$

The top case is where the model is returning a value that is the right sign (remember our labels are either +1 or -1) and far enough from the decision boundary that we don't need to move the line.

In this case, where $(y\mathbf{w}^T\mathbf{x}) > 1$, our loss function is $L(\mathbf{x}, y, \mathbf{w})=0$. That's easy, the gradient must also be 0 in this case. So we just need to consider the other case.

From the previous slide:
$$L(\mathbf{x}, y, \mathbf{w}) = \begin{cases} 0 & \text{if } y \mathbf{w}^T \mathbf{x} > 1 \\ 1 - y \mathbf{w}^T \mathbf{x} & \text{else} \end{cases}$$

The bottom case is where we will need to get the gradient. First, let's put that case into a form where doing the math will be easy and obvious.

$$L(\mathbf{x}, y, \mathbf{w}) = 1 - y \mathbf{w}^{T} \mathbf{x}$$

= 1 - y(w_{0}x_{0} + ... w_{d}x_{d} + ... w_{D}x_{D})
= 1 - yw_{0}x_{0} ... - yw_{d}x_{d} ... - yw_{D}x_{D}

From prev. slide: $L(\mathbf{x}, y, \mathbf{w}) = 1 - yw_0 x_0 \dots - yw_d x_d \dots - yw_D x_D$

Since w_d is the only parameter we're varying right now, all w_j where $j \neq d$ are constant in this partial derivative. Therefore...

$$\frac{\partial L}{\partial w_d} = -yx_d$$

The label is the same, regardless of the dimension we're considering. Thus we can get the full gradient by multiplying y by the full vector **x**

$$\nabla L(\mathbf{x}, y, \mathbf{w}) = -y\mathbf{x}$$

Regularization

(note....the slides are back to using θ for the model parameters)

Revisiting Overfitting

- Overfitting occurs when your model begins to "memorize" the training data
 - Can detect overfitting from an increasing gap between training and validation loss.
 - Performance on the training set improves, but performance on the validation set does not.

Revisiting Overfitting: Regularization

- Big idea (**Occam's Razor**) Given two models with equal performance, prefer the *simpler* model.
 - E.g., models with fewer parameters or smaller coefficients
- Regularization can be applied to any loss function

$$L_R(X, Y; \theta) = L(X, Y; \theta) + \lambda R(\theta)$$

- The amount of regularization is controlled by the hyperparameter λ

L1- and L2-regularization

• Recall the l_p -norm:

$$\ell_p(heta) = \sqrt[p]{\sum_{i=1}^d | heta_i|^p}$$

• l_1 -regularization penalizes high values of the l_1 -norm of the model parameters:

$$R_1(\theta) = \sum_{i=1}^d |\theta_i|$$

• l_2 -regularization penalizes high values of the l_2 -norm:

$$R_2(\theta) = \frac{1}{2} \sum_{i=1}^d |\theta_i|^2$$

L1-regularization and sparsity

- L1-regularization encourages the model parameters to be *sparse*
 - This is a form of feature selection
 - Only features with non-zero coefficients contribute to the model's prediction
- This is because the gradient of L1-regularization moves model parameters towards 0 at a *constant* rate

L1-regularization and sparsity

- The gradient of the L1-regularizer is bounded (between -1 and +1, inclusive) but not unique at $\theta = 0$.
- Arbitrarily set the gradient at this point to 0.
- The resulting function is the *sign* function

Regularization and offset (aka bias)

- Many ML models include a bias term, b.
- Example: A linear model: $h_{ heta}(x) = heta^T x + b$
- Or equivalently, by augmenting θ and x, like we did with perceptrons...

$$\theta' = [\theta_1, \theta_2, \dots, \theta_d, b], \ x' = [x_1, x_2, \dots, x_d, 1]$$

• What happens if we regularize the bias term?

Regularization and offset (aka bias)

- Recall that "regularizing" a model parameter means encouraging that model parameter to tend towards 0.
- How would a linear model represent horizontal line?
- How does shrinking the bias affect its ability to do so?

A familiar example

- A lot of algorithms can be constructed by simply combining a loss function and a regularizer
- For example, hinge loss and L2-regularization with a linear hypothesis

$$L_H(S, Y; \theta) + \lambda R_2(\theta) = \frac{1}{N} \sum_{i=1}^N \max(0, 1 - y_i \theta^T x_i) + \frac{\lambda}{2} \|\theta\|_2^2$$

• Does this look like something we've studied?

Soft margin SVMs!

Learning a maximum margin separator via gradient descent

- Finding an exact solution for SVMs can be difficult
 - Convex quadratic programming problem
 - $\sim O(n^3)$
- Finding a good approximate solution for SVMs using gradient descent is much easier and computationally faster

Multi-class Classification

Using your linear model, once learned

• Regression:

$$\hat{y} = h_{\theta}(x)$$

• Binary classification:

$$\hat{y} = \begin{cases} 1, & \text{if } h_{\theta}(x) > 0\\ -1, & \text{otherwise} \end{cases}$$

- What about classification with more than 2 classes (e.g., *C* classes)? We will discuss 2 approaches:
 - One-vs-One classification
 - One-vs-All classification

One-vs-One Classification

- Train a binary classifier to disambiguate between each *pair* of classes
- Final prediction is the majority vote among all binary classifiers

One-vs-One Classification

- Train a binary classifier to disambiguate between each *pair* of classes
- Final prediction is the majority vote among all binary classifiers

One-vs-All Classification

- Train a binary classifier on whether an example does or does not belong to a class
- Predict based on the *highest confidence score* (i.e., the regression output)

