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CS 349:Machine Learning
Bryan Pardo & Bongjun Kim

Topic: Decision Trees
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There is a set of possible examples

Each example is an n-tuple of attribute values

There is a target function that maps X onto some finite set Y

The DATA is a set of duples <example, target function values>

Find a hypothesis h such that...

General Learning Task
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Attribute-based representations
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Decision Tree
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Expressiveness of D-Trees
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Decision Trees represent 
disjunctions of conjunctions

weak) Windrain Outlook(
overcast)(Outlook

Normal)HumiditySunny(Outlook
 iff...  )(

=Ù=
Ú=

Ú=Ù=
= yesxf



Decision Tree Boundaries
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A learned decision tree
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Choosing an attribute
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The more skewed the examples in a bin, the better.

We’re going to use ENTROPY to as a measure of how skewed each bin is.  



Counts as probabilities
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P1 = probability I will wait for a table
P2 = probability I will NOT wait for a table

P1 = 0.5
P2 = 0.5

P1 = 0.333
P2 = 0.667

P1 = 0
P2 = 1

P1 = 1
P2 = 0



Information
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About ID3

• A recursive, greedy algorithm to build a decision tree

• At each step it picks the best variable to split the data 
on, and then moves on

• It is “greedy” because it makes the optimal choice at the 
current step, without considering anything beyond the 
current step.

• This can lead to trouble, if one needs to consider things 
beyond a single variable (e.g. multiple variables) when 
making a choice.  (Try it on XOR)
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Decision Tree Learning (ID3)
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Choosing an attribute in ID3

• For each attribute, find the entropy H of the 
example set AFTER splitting on that example
*note, this means taking the entropy of each subset 
created by splitting on the attribute, and then 
combining these entropies…weighted by the size of 
each subset.

• Pick the attribute that creates the lowest overall 
entropy.
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Entropy prior to splitting
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H0 P1,P2 = −Pj
j
∑ log2 Pj

              = −P1 log2 P1 − P2 log2 P2

               = 1

P1 = probability I will wait for a table
P2 = probability I will NOT wait for a table

Instances where I waited
Instances where I didn’t



If we split on Patrons
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Hnone Hsome H full

HPatrons =WnoneHnone +WsomeHsome +WfullH full
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If we split on Type
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HType =WfrenchH french +WitalianHitalian +WthaiHthai +WburgerHburger

= 2
12
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Decision Tree Learning (ID3)
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A fully worked-out example

• Let’s build a tree with ID3 to decide 
whether, on a particular day, I will play 
tennis.
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Training examples
Someone followed me around for two weeks to see if I played 
tennis each day and collected the following data to train a 
model.



Information Gain
• The expected reduction in Entropy
• Entropy (before split) − Entropy (after split)

S    = the set of examples
|S|  = the number of examples in the set S
A    = the attribute you’re splitting the data on
v    = one of the values attribute A can take
Sv = the subset of S where the examples take value v on attribute A

Gain(S,A) = Entropy(S)−
Sv
Sv∈Values(A)

∑ Entropy(Sv )|   |



How to choose the best attribute

• Pick the one with the most information gain
• The expected reduction in Entropy
• Entropy (before split) − Entropy (after split)

Gain(S,A) = Entropy(S)−
Sv
Sv∈Values(A)

∑ Entropy(Sv )

outlook

sunny rain

Temp.

hot cool

wind

strong weak

Humidity

high Normal
mildovercast

|   |



Entropy before & after 
P1 = probability I will play tennis
P2 = probability I will NOT play tennis

Entropy(S) = −Pj
j
∑ log2 Pj

              = −P1 log2 P1 −P2 log2 P2

Humidity

high Normal

S: [9+, 5-], Entropy

[3+, 4-]
Entropy=0.985

[6+, 1-]
Entropy=0.592

= −(9/14)log2(9/14) −(5/14)log2(5/14)
= 0.94

9 ‘yes’ 
examples

5 ‘no’ 
examples



Information gain for Humidity

Humidity

high Normal

S: [9+, 5-], E=0.94

[3+, 4-]
H=0.985

[6+, 1-]
H=0.592

Gain(S, Humidity)
= 0.94 – ((7/14)*0.985+(7/14)*0.592
= 0.151

Gain(S,A) = Entropy(S)−
Sv
Sv∈Values(A)

∑ Entropy(Sv )|   |

(remember, we’re using H to mean ‘entropy’)



outlook

sunny rain

Gain(S, outlook)
= 0.246

overcast

S: [9+, 5-], H=0.94

Temp.

hot cool

Gain(S, Temp)
= 0.029

mild

S: [9+, 5-], H=0.94

wind

strong weak

Gain(S, wind)
= 0.048

S: [9+, 5-], H=0.94

Humidity

high Normal

Gain(S, Humidity)
= 0.151

S: [9+, 5-], H=0.94

[3+, 4-]
E=0.985

[6+, 1-]
E=0.592



Since ‘outlook’ has the most 
information gain, this 
becomes the root of the 
decision tree.

We split the data into 
subsets, based on the 
outlook.

…and we remove outlook as 
an attribute to consider.outlook

sunny overcast rain



Humidity

high Normal

Gain = 0.971

[2+, 0-][0+, 3-]

[2+, 3-]
H=0.971

wind

strong weak

Gain < 0.971

[1+, 1-]
H=1

[1+, 2-]
H=0.92

[2+, 3-]
H=0.971

Temp.

hot cool

Gain = 0.971-(2/5)*1.0
=  0.570

mild

[2+, 3-]
H=0.971

[0+, 2-]
H=0

[1+, 1-]
H =1

[1+, 0-]
H = 0

outlook

sunny overcast rain



Humidity

high Normal

outlook

sunny overcast rain



Humidity

high Normal

outlook

sunny overcast rain

No Yes

Yes
?

If the data subset at a branch is all one 
category, you can stop and return that 
category as the answer.



outlook

sunny overcast rain

Humidity

high Normal

No Yes

Yes

Temp.

hot cool
mild

[3+, 2-]
H=0.971

[0+, 0-] [2+, 1-]
H=0.92

[1+, 1-]
H=1.0

Humidity

high Normal

[2+, 1-][1+, 1-]

[3+, 2-]
H=0.971

wind

strong weak

[0+, 2-] [3+, 0-]

[3+, 2-]
H=0.971



outlook

sunny overcast rain

Humidity

high Normal

No Yes

Yes wind

strong weak

No Yes

The final tree



Measuring Performance
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What the learning curve tells us

Bryan Pardo, EECS 349 Fall 2009 33



Rule #2 of Machine Learning

The best (i.e. the one that generalizes well) 
hypothesis almost never achieves 100% 
accuracy on the training data.

(Rule #1 was: you can’t learn anything 
without inductive bias)



Avoiding Overfitting

• Approaches
– Stop splitting when information gain is low or when split 

is not statistically significant.
– Grow full tree and then prune it when done

• How to pick the “best” tree?
– Performance on training data?
– Performance on validation data?
– Complexity penalty?
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Reduced Error Pruning

• Split data into a training and a validation set

• Repeat until pruning hurts performance measure
1. Try removing each leaf node (one by one) and measure the 

resulting performance on the validation set
2. Remove the leaf that most improves performance
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C4.5 Algorithm

• Builds a decision tree from labeled training data

• Also by Ross Quinlan

• Generalizes ID3 by
– Allowing continuous value attributes
– Allows missing attributes in examples
– Prunes tree after building to improve generality
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Rule post pruning

• Used in C4.5
• Steps

1. Build the decision tree
2. Convert it to a set of logical rules
3. Prune each rule independently
4. Sort rules into desired sequence for use
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Take away about decision trees

• Used as classifiers
• Supervised learning algorithms (ID3, C4.5)
• (mostly) Batch processing
• Good for situations where

– The classification categories are finite
– The data can be represented as vectors of 

attributes
– You want to be able to UNDERSTAND how 

the classifier makes its choices
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