
(Includes content provided by: Tom Mitchell, Russel & Norvig, D. Downie, P. Domingos)

CS 349:Machine Learning
Bryan Pardo & Bongjun Kim

Topic: Decision Trees

1

There is a set of possible examples

Each example is an n-tuple of attribute values

There is a target function that maps X onto some finite set Y

The DATA is a set of duples <example, target function values>

Find a hypothesis h such that...

General Learning Task

},...{ 1 nxxX !!
=

>=< kaax ,...,11
!

YXf ®:

})(,,...)(,{ 11 ><><= mm xfxxfxD !!!!

)()(, xfxhx !!!
»"

Attribute-based representations

Bryan Pardo, EECS 349 Fall 2009 3

Decision Tree

Bryan Pardo, EECS 349 Fall 2009 4

Expressiveness of D-Trees

Bryan Pardo, EECS 349 Fall 2009 5

Decision Trees represent
disjunctions of conjunctions

weak) Windrain Outlook(
overcast)(Outlook

Normal)HumiditySunny(Outlook
 iff...)(

=Ù=
Ú=

Ú=Ù=
= yesxf

Decision Tree Boundaries

Bryan Pardo, EECS 349 Fall 2009 7

A learned decision tree

Bryan Pardo, EECS 349 Fall 2009 8

Choosing an attribute

Bryan Pardo, EECS 349 Fall 2009 9

The more skewed the examples in a bin, the better.

We’re going to use ENTROPY to as a measure of how skewed each bin is.

Counts as probabilities

Bryan Pardo, EECS 349 Fall 2014 10

P1 = probability I will wait for a table
P2 = probability I will NOT wait for a table

P1 = 0.5
P2 = 0.5

P1 = 0.333
P2 = 0.667

P1 = 0
P2 = 1

P1 = 1
P2 = 0

Information

Bryan Pardo, EECS 349 Fall 2009 11

About ID3

• A recursive, greedy algorithm to build a decision tree

• At each step it picks the best variable to split the data
on, and then moves on

• It is “greedy” because it makes the optimal choice at the
current step, without considering anything beyond the
current step.

• This can lead to trouble, if one needs to consider things
beyond a single variable (e.g. multiple variables) when
making a choice. (Try it on XOR)

Bryan Pardo, EECS 349 Fall 2009 12

Decision Tree Learning (ID3)

Bryan Pardo, EECS 349 Fall 2009 13

Choosing an attribute in ID3

• For each attribute, find the entropy H of the
example set AFTER splitting on that example
*note, this means taking the entropy of each subset
created by splitting on the attribute, and then
combining these entropies…weighted by the size of
each subset.

• Pick the attribute that creates the lowest overall
entropy.

Bryan Pardo, EECS 349 Fall 2009 14

Entropy prior to splitting

Bryan Pardo, EECS 349 Fall 2009 15

H0 P1,P2 = −Pj
j
∑ log2 Pj

 = −P1 log2 P1 − P2 log2 P2

 = 1

P1 = probability I will wait for a table
P2 = probability I will NOT wait for a table

Instances where I waited
Instances where I didn’t

If we split on Patrons

Bryan Pardo, EECS 349 Fall 2014 16

Hnone Hsome H full

HPatrons =WnoneHnone +WsomeHsome +WfullH full

= 2
12
0 + 4
12
0 + 6
12

− 2
6
log2

2
6
− 4
6
log2

4
6

⎛
⎝⎜

⎞
⎠⎟ = .459

If we split on Type

Bryan Pardo, EECS 349 Fall 2009 17

HType =WfrenchH french +WitalianHitalian +WthaiHthai +WburgerHburger

= 2
12
1+ 2
12
1+ 4
12
1+ 4
12
1= 1

Decision Tree Learning (ID3)

Bryan Pardo, EECS 349 Fall 2009 18

A fully worked-out example

• Let’s build a tree with ID3 to decide
whether, on a particular day, I will play
tennis.

19

Training examples
Someone followed me around for two weeks to see if I played
tennis each day and collected the following data to train a
model.

Information Gain
• The expected reduction in Entropy
• Entropy (before split) − Entropy (after split)

S = the set of examples
|S| = the number of examples in the set S
A = the attribute you’re splitting the data on
v = one of the values attribute A can take
Sv = the subset of S where the examples take value v on attribute A

Gain(S,A) = Entropy(S)−
Sv
Sv∈Values(A)

∑ Entropy(Sv)| |

How to choose the best attribute

• Pick the one with the most information gain
• The expected reduction in Entropy
• Entropy (before split) − Entropy (after split)

Gain(S,A) = Entropy(S)−
Sv
Sv∈Values(A)

∑ Entropy(Sv)

outlook

sunny rain

Temp.

hot cool

wind

strong weak

Humidity

high Normal
mildovercast

| |

Entropy before & after
P1 = probability I will play tennis
P2 = probability I will NOT play tennis

Entropy(S) = −Pj
j
∑ log2 Pj

 = −P1 log2 P1 −P2 log2 P2

Humidity

high Normal

S: [9+, 5-], Entropy

[3+, 4-]
Entropy=0.985

[6+, 1-]
Entropy=0.592

= −(9/14)log2(9/14) −(5/14)log2(5/14)
= 0.94

9 ‘yes’
examples

5 ‘no’
examples

Information gain for Humidity

Humidity

high Normal

S: [9+, 5-], E=0.94

[3+, 4-]
H=0.985

[6+, 1-]
H=0.592

Gain(S, Humidity)
= 0.94 – ((7/14)*0.985+(7/14)*0.592
= 0.151

Gain(S,A) = Entropy(S)−
Sv
Sv∈Values(A)

∑ Entropy(Sv)| |

(remember, we’re using H to mean ‘entropy’)

outlook

sunny rain

Gain(S, outlook)
= 0.246

overcast

S: [9+, 5-], H=0.94

Temp.

hot cool

Gain(S, Temp)
= 0.029

mild

S: [9+, 5-], H=0.94

wind

strong weak

Gain(S, wind)
= 0.048

S: [9+, 5-], H=0.94

Humidity

high Normal

Gain(S, Humidity)
= 0.151

S: [9+, 5-], H=0.94

[3+, 4-]
E=0.985

[6+, 1-]
E=0.592

Since ‘outlook’ has the most
information gain, this
becomes the root of the
decision tree.

We split the data into
subsets, based on the
outlook.

…and we remove outlook as
an attribute to consider.outlook

sunny overcast rain

Humidity

high Normal

Gain = 0.971

[2+, 0-][0+, 3-]

[2+, 3-]
H=0.971

wind

strong weak

Gain < 0.971

[1+, 1-]
H=1

[1+, 2-]
H=0.92

[2+, 3-]
H=0.971

Temp.

hot cool

Gain = 0.971-(2/5)*1.0
= 0.570

mild

[2+, 3-]
H=0.971

[0+, 2-]
H=0

[1+, 1-]
H =1

[1+, 0-]
H = 0

outlook

sunny overcast rain

Humidity

high Normal

outlook

sunny overcast rain

Humidity

high Normal

outlook

sunny overcast rain

No Yes

Yes
?

If the data subset at a branch is all one
category, you can stop and return that
category as the answer.

outlook

sunny overcast rain

Humidity

high Normal

No Yes

Yes

Temp.

hot cool
mild

[3+, 2-]
H=0.971

[0+, 0-] [2+, 1-]
H=0.92

[1+, 1-]
H=1.0

Humidity

high Normal

[2+, 1-][1+, 1-]

[3+, 2-]
H=0.971

wind

strong weak

[0+, 2-] [3+, 0-]

[3+, 2-]
H=0.971

outlook

sunny overcast rain

Humidity

high Normal

No Yes

Yes wind

strong weak

No Yes

The final tree

Measuring Performance

Bryan Pardo, EECS 349 Fall 2009 32

What the learning curve tells us

Bryan Pardo, EECS 349 Fall 2009 33

Rule #2 of Machine Learning

The best (i.e. the one that generalizes well)
hypothesis almost never achieves 100%
accuracy on the training data.

(Rule #1 was: you can’t learn anything
without inductive bias)

Avoiding Overfitting

• Approaches
– Stop splitting when information gain is low or when split

is not statistically significant.
– Grow full tree and then prune it when done

• How to pick the “best” tree?
– Performance on training data?
– Performance on validation data?
– Complexity penalty?

Bryan Pardo, EECS 349 Fall 2009 35

Reduced Error Pruning

• Split data into a training and a validation set

• Repeat until pruning hurts performance measure
1. Try removing each leaf node (one by one) and measure the

resulting performance on the validation set
2. Remove the leaf that most improves performance

Bryan Pardo, EECS 349 Fall 2009 36

C4.5 Algorithm

• Builds a decision tree from labeled training data

• Also by Ross Quinlan

• Generalizes ID3 by
– Allowing continuous value attributes
– Allows missing attributes in examples
– Prunes tree after building to improve generality

Bryan Pardo, EECS 349 Fall 2009 37

Rule post pruning

• Used in C4.5
• Steps

1. Build the decision tree
2. Convert it to a set of logical rules
3. Prune each rule independently
4. Sort rules into desired sequence for use

Bryan Pardo, EECS 349 Fall 2009 38

Take away about decision trees

• Used as classifiers
• Supervised learning algorithms (ID3, C4.5)
• (mostly) Batch processing
• Good for situations where

– The classification categories are finite
– The data can be represented as vectors of

attributes
– You want to be able to UNDERSTAND how

the classifier makes its choices

Bryan Pardo, EECS 349 Fall 2009 39

