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Example: Clustering HIN1 Genomes
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Recap: Supervised Learning
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Recall: Supervised Learning Tasks

There is a set of possible examples X = {Xl ’ '“Xn}

Each example is a vector of d real valued attributes
Xi = (Ti1,- - - Tid)

A target function maps X onto some real or categorical value Y

f:X->Y

The DATA is a set of tuples <example, response value>

<X,y >,...<X_,y, >}
Find a hypothesis h such that...

VX, h(X) = f(X)



Unsupervised Learning

* We no longer have labels!
* What can we do?

* We still can have a notion of groups
* Task: divide things into piles of similar things

* Classification found patterns that explained a label
* We can find patterns that separate the data



Clustering

* Sort the data into clusters (groups)

* Examples that are in the same group are similar

* [tems in cluster are more similar to one another than to
items not in the cluster

* |deally clusters correspond to (unknown) labels

* We don’t know what we will get!
* What does it mean for two examples to be similar?
* How do we measure the quality of our clusters?



Unsupervised Learning Tasks

There is a set of possible examples {
X ={X,,...X }
1% n

Each example is a vector of d real valued attributes
Xij = (Ti1,-. Tid)















Unsupervised Learning Tasks

There is a set of possible examples {
X ={X,,...X }
1% n

Each example is a vector of d real valued attributes
Xij = (Ti1,-. Tid)

Assume some latent variable(s) z that correspond to
the observed data

{(x1,21),...(Xn, 2n)}
Learn a way to assign examples to clusters such that

both:
7 d(zi,z;) < €= 2z; = 25
d(xi,xj) > € = 2; # 2;



Geometric Model




Visualization: 2 Clusters




Defining Clusters

* A cluster is a group of similar examples
* Define z as an indicator:
Znk € {O, 1}

*VValue of 1 means that example n is in cluster k
* Define cluster k by a prototype:

ZN in.k X
. n=1 ~n, I
Uk = N

anl Znak




Clustering objective function

* Objective: maximize the similarity of every cluster

* Each example in a cluster should be close to its
prototypical example

N K
J = Z Z “nk d(Xna ,uk)

n=1 k=1



Learning

N K
J = Z Z “nk d(Xna ,uk)

* We’ll typically assume d is Euclidean distance
* But it doesn’t have to be!

* We have two parameters: z and [
* Want to pick those parameters to minimize J



Learning

N K
J = Z Z “nk d(Xna ,uk)

n=1 k=1

* Qur two parameters depend on each other
*If we knew z we could set u

e Compute a cluster’s mean from its assigned examples
*If we knew p we could set z
* Assign each point to closest cluster



Update Rules

1 k= arg min; d(Xn, ;)

\ 0 otherwise




Optimization and convergence

* Each update reduces the value of J
* Therefore, algorithm will converge
* (How would you prove this?)

* Note: J is non-convex
* Not guaranteed to find an optimal clustering
* Initial values matter, so random restarts may help



Algorithm: K-Means

X ={X;,..X_}
*Input data X and initialize pu Xi = <£IZ7;,1, "o x’i,d>
* [teratively update until convergence:

1 k= argmin; d(Xn, it;)
“nk — :
0 otherwise

SN X
_ n=1 N, Il
ILLk T N

anl Znak




Visualization: 2 Clusters

| 1000 ¢

500




https://upload.wikimedia.org/wikipedia/commons/e/ea/K-means_convergence.gif
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K-Means is just one algorithm

* Many approaches to defining clustering algorithms
e Let’s start by understanding limitations of K-means

Optimal clustering is NP hard; random restarts needed
Choice of K may be important

Cluster centers are sensitive to outliers

Works poorly on non-convex clusters

Assumes spherical, equally likely clusters

Hard assignment of example to clusters

NP-Hard proof: https://cseweb.ucsd.edu/~avattani/papers/kmeans_hardness.pdf



How many clusters?

* What’s going to happen if we keep increasing the number
of clusters?

* What happened when we kept increasing the degree of a
polynomial regression?

* Will this happen with
K-Means? Iy M =9
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How many clusters?
700 1| —-- BIC
y --- AIC
600 - ‘ ..... SSD
‘ 35
so0{ 1 |
‘,‘ " Looks familiar!
400 - i
p
300 - LY
3
200 - 5‘
100 A
01— l , . . . , , . .
1 2 3 4 5 6 1 8 9 10
k

SSD: Sum of squared distances (our standard clustering loss)
AIC: Akaike information criterion
BIC: Bayesian information criterion



K-Means is sensitive to outliers

* Means are sensitive to outliers, which can give bad
cluster centers

e Solution: switch to medians

(a) Mean (b) Medoid

https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_426



K-Means and non-convex clusters

* Not all clusters are spherical
* How will k-means do on this data?

-1.51.6-0500051015 202530

https://pafnuty.wordpress.com/2013/08/14/non-convex-sets-with-k-means-and-hierarchical-clustering/



K-Means and non-convex clusters
kmeans with k=2 kmeans with k=3

] 1] ] 1] ] 1] ] ] ] ] 1] ] 1] 1] ] ]

= -
- 4
-

-2 F - -2 F -

-1.51.60.000051015202530 -1.51.60.500051015202530

https://pafnuty.wordpress.com/2013/08/14/non-convex-sets-with-k-means-and-hierarchical-clustering/



Spectral Clustering

* Partitional but non-spherical clustering

e Construct a graph G from the data
* Vertices are still examples

* Edges are weighted similarity between examples
* Weights may depend on the application

.-l. T " xn= 2
= l.'.':.-- = --: :..
LR - =
: - :.-'.’ ™ . " f-" -
i - n L 2. g ll-l .l-.l
- : " :l : ..E.'.f.
I.... o
" g = -

https://people.eecs.berkeley.edu/~jordan/courses/294-fall09/lectures/clustering/slides.pdf



https://people.eecs.berkeley.edu/~jordan/courses/294-fall09/lectures/clustering/slides.pdf

Spectral Clustering

* Goal of clustering: Partition the vertices of the graph

* Loss function: measured by a cut of the graph

* Minimize Cut (min-cut): the weight of the edges “cut”
by partitioning vertices into different clusters

* Requires normalization to force meaningful cuts
* Minimizing normalized cut is still NP-hard

. om K-means on left;

s an " am = m‘f‘m ~ spectral below

https://people.eecs.berkeley.edu/~jordan/courses/294—fa|IO9/Iectures/clustering/slides.pd?“



https://people.eecs.berkeley.edu/~jordan/courses/294-fall09/lectures/clustering/slides.pdf

Relaxing K-Means

* K-means assumes spherical, equally likely clusters

* An example must belong to a single cluster
* Introduces instability between training iterations as
examples “jump” between clusters
* Solution: Relax this constraint to allow a more
flexible notion of cluster membership




Relaxing K-Means




Relaxing K-Means o © o .ﬁ. o o




Recall: K-Means Updates

1 k= argmin; d(Xn, it;)
“nk — :
0 otherwise

S Znk X
L n=1]1 ~n, 141
Uk = N

S:n—l Zn,k
Mean 1§ )




“n,k :{
Picking a new update rule

1 k= argmin; d(xn, it;)

0 otherwise

D " © =
® " JEN _|Mean 2
® @
2 1 = _d(xnnu'l)
" _d(XIh lu'l) — d(XIh :u2)
_ _d(XIh :uk)
“n.k — K
Y d(xa, 1)



https://towardsdatascience.com/identifying-restaurant-hotspots-with-a-gaussian-mixture-model-2a840ab0c782



Picking a new update rule

N e
R Sy L el
= (xn- p) ' T (Xn — i)
“nk = , — \
> N(Xn | HE Ek)

k=3 An,k — i7e

| > i1 N (xn | 5, 35)
Znk = IZe =

2_j=1€XP (—(Xn = 17) " Xj(Xn — p7))
2 = (27T)_K/2\/det(2k) exp (_(Xn _ Mk)TEk(Xn B ,Uk)/Q)

St (2m) K2 [det(S;) exp (—(xn — 115) T Xj(Xn — 115)/2)



Generative Clustering Model

* Assume we have K clusters
* Each cluster represented by a multivariate Gaussian

* Generative process
* Select a cluster (a Gaussian distribution)

* Generate an example by sampling from the Gaussian
Cluster 2

Cluster 1
Cluster 3

_)i top| (_ _>. O") (—‘ —)-O'}
{1 12 143
https://towardsdatascience.com/gaussian-mixture-models-explained-6986aaf5a95



Gaussian Mixtures

* Since we have multiple Gaussians generating points,
we call the model Gaussian Mixture Model

* Why Gaussians?
e Captures intuition about clusters
* Examples are more likely to be near center of cluster




Gaussian Mixture Model

Cluster Responsibilities * Cluster means, variances, and
weight coefficients

TN (Xn | Hk, Lk ) Nk — ZY(Z k)
n

Y (Znk) =
YK N (x|, Z))
N N
TN T 2k N
Ui = N, Z Y (Znk)Xn
k n=1

N_ Z V(an)(xn ﬂk)(xn _ ﬂk)T
k n=1



Generative Clustering Model

* Assume we have K clusters
* Each cluster represented by a multivariate Gaussian

* Generative process
* Select a cluster (a Gaussian distribution)

* Generate an example by sampling from the Gaussian
Cluster 2

Cluster 1
Cluster 3

_)i top| (_ _>. O") (—‘ —)-O'}
{1 12 143
https://towardsdatascience.com/gaussian-mixture-models-explained-6986aaf5a95



Problems with GMMs

* Mode collapse: cluster with a single example
* Undefined variance: catch this and reset that cluster
* Non-convex likelihood: K! equivalent solutions
 Random restarts may still be helpful
* Slower: requires more iterations than K-Means

* And each iteration is more computationally expensive



Next time: Expectation Maximization

* K-Means and GMMs share a general algorithm:

* Initialize parameters that describe the data

* Repeat until converged:
1. Compute assignment for every data point
2. Update parameters based on those assignments

* What else can this algorithm do?

Maximum Likelihood from Incomplete Data Via the EM Algorithm

AP Dempster, NM Laird... - Journal of the Royal ..., 1977 - Wiley Online Library

A broadly applicable algorithm for computing maximum likelihood estimates from incomplete
data is presented at various levels of generality. Theory showing the monotone behaviour of
the likelihood and convergence of the algorithm is derived. Many examples are sketched ...
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