Machine Learning

Clustering

Zach Wood-Doughty and Bryan Pardo Machine Learning: CS 349 Fall 2021

Some slides borrowed from Mark Dredze and Prem Seetharaman, with inspiration from: http://www.mit.edu/~9.54/fall14/slides/Class13.pdf and https://people.eecs.berkeley.edu/~jordan/courses/294-fall09/lectures/clustering/slides.pdf

Example: Eruptions at Old Faithful Geyser

Example: Clustering H1N1 Genomes

Deng et al. A Novel Method of Characterizing Genetic Sequences: Genome Space with Biological Distance and Applications.

Example: Color Segmentation

Original Image 16M colors

3 Colors

Recap: Supervised Learning

Number of Feet	Fur	Size	Has wings	Warm Blood	f(x)
2	No	S	Yes	Yes	0
4	Yes	S	No	Yes	1

Recall: Supervised Learning Tasks

There is a set of possible examples

$$X = \{\mathbf{x}_1, \dots \mathbf{x}_n\}$$

Each example is a vector of d real valued attributes

$$\mathbf{x_i} = \langle x_{i,1}, \dots x_{i,d} \rangle$$

A target function maps X onto some real or categorical value Y

$$f: X \to Y$$

The DATA is a set of tuples <example, response value>

$$\{<\mathbf{x}_1, y_1>, ... <\mathbf{x}_n, y_n>\}$$

Find a hypothesis h such that...

$$\forall \mathbf{x}, h(\mathbf{x}) \approx f(\mathbf{x})$$

Unsupervised Learning

- We no longer have labels!
- What can we do?

- We still can have a notion of groups
- Task: divide things into piles of similar things
- Classification found patterns that explained a label
 - We can find patterns that separate the data

Clustering

- Sort the data into clusters (groups)
- Examples that are in the same group are similar
 - Items in cluster are more similar to one another than to items not in the cluster
 - Ideally clusters correspond to (unknown) labels
- We don't know what we will get!
 - What does it mean for two examples to be similar?
 - How do we measure the quality of our clusters?

Unsupervised Learning Tasks

There is a set of possible examples χ_{\pm}

$$X = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$$

Each example is a vector of d real valued attributes

$$\mathbf{x_i} = \langle x_{i,1}, \dots x_{i,d} \rangle$$

Unsupervised Learning Tasks

There is a set of possible examples $X = \{\mathbf{x_1}, \dots \mathbf{x_n}\}$

Each example is a vector of d real valued attributes

$$\mathbf{x_i} = \langle x_{i,1}, \dots x_{i,d} \rangle$$

Assume some latent variable(s) z that correspond to the observed data

$$\{\langle \mathbf{x_1}, z_1 \rangle, \dots \langle \mathbf{x_n}, z_n \rangle\}$$

Learn a way to assign examples to clusters such that both:

$$d(x_i, x_j) < \epsilon \Rightarrow z_i = z_j$$
$$d(x_i, x_j) > \epsilon \Rightarrow z_i \neq z_j$$

Geometric Model

Visualization: 2 Clusters

Defining Clusters

- A cluster is a group of similar examples
- Define z as an indicator:

$$z_{n,k} \in \{0,1\}$$

- Value of 1 means that example n is in cluster k
- Define cluster k by a prototype:

$$\mu_{\mathbf{k}} = \frac{\sum_{n=1}^{N} z_{n,k} \cdot \mathbf{x_n}}{\sum_{n=1}^{N} z_{n,k}}$$

Clustering objective function

- Objective: maximize the similarity of every cluster
 - Each example in a cluster should be close to its prototypical example

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{n,k} \cdot d(\mathbf{x_n}, \mu_k)$$

Learning

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{n,k} \cdot d(\mathbf{x_n}, \mu_k)$$

- We'll typically assume d is Euclidean distance
 - But it doesn't have to be!
- We have two parameters: z and μ
- Want to pick those parameters to minimize J

Learning

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{n,k} \cdot d(\mathbf{x_n}, \mu_k)$$

- Our two parameters depend on each other
- If we knew z we could set μ
 - Compute a cluster's mean from its assigned examples
- If we knew μ we could set z
 - Assign each point to closest cluster

Update Rules

$$z_{n,k} = \begin{cases} 1 & k = \arg\min_{j} d(\mathbf{x_n}, \mu_j) \\ 0 & \text{otherwise} \end{cases}$$

$$\mu_{\mathbf{k}} = \frac{\sum_{n=1}^{N} z_{n,k} \cdot \mathbf{x_n}}{\sum_{n=1}^{N} z_{n,k}}$$

Optimization and convergence

- Each update reduces the value of J
 - Therefore, algorithm will converge
 - (How would you prove this?)
- Note: J is non-convex
 - Not guaranteed to find an optimal clustering
 - Initial values matter, so random restarts may help

Algorithm: K-Means

- $X = \{\mathbf{x_1, ... x_n}\}$ $\mathbf{x_i} = \langle x_{i,1}, ... x_{i,d} \rangle$
- Input data X and initialize μ
- Iteratively update until convergence:

$$z_{n,k} = \begin{cases} 1 & k = \arg\min_{j} d(\mathbf{x_n}, \mu_j) \\ 0 & \text{otherwise} \end{cases}$$

$$\mu_{\mathbf{k}} = \frac{\sum_{n=1}^{N} z_{n,k} \cdot \mathbf{x_n}}{\sum_{n=1}^{N} z_{n,k}}$$

Visualization: 2 Clusters

K-Means is just one algorithm

- Many approaches to defining clustering algorithms
- Let's start by understanding limitations of K-means
 - Optimal clustering is NP hard; random restarts needed
 - Choice of K may be important
 - Cluster centers are sensitive to outliers
 - Works poorly on non-convex clusters
 - Assumes spherical, equally likely clusters
 - Hard assignment of example to clusters

How many clusters?

- What's going to happen if we keep increasing the number of clusters?
- What happened when we kept increasing the degree of a polynomial regression?
- Will this happen with K-Means?

How many clusters?

SSD: Sum of squared distances (our standard clustering loss)

AIC: Akaike information criterion

BIC: Bayesian information criterion

K-Means is sensitive to outliers

- Means are sensitive to outliers, which can give bad cluster centers
- Solution: switch to medians

K-Means and non-convex clusters

- Not all clusters are spherical
- How will k-means do on this data?

K-Means and non-convex clusters

Spectral Clustering

- Partitional but non-spherical clustering
- Construct a graph G from the data
 - Vertices are still examples
 - Edges are weighted similarity between examples
 - Weights may depend on the application

Spectral Clustering

- Goal of clustering: Partition the vertices of the graph
- Loss function: measured by a cut of the graph
 - Minimize Cut (min-cut): the weight of the edges "cut" by partitioning vertices into different clusters
 - Requires normalization to force meaningful cuts
 - Minimizing normalized cut is still NP-hard

https://people.eecs.berkeley.edu/~jordan/courses/294-fall09/lectures/clustering/slides.pdf

Relaxing K-Means

- K-means assumes spherical, equally likely clusters
- An example must belong to a single cluster
 - Introduces instability between training iterations as examples "jump" between clusters
- Solution: Relax this constraint to allow a more flexible notion of cluster membership

Recall: K-Means Updates

$$z_{n,k} = \begin{cases} 1 & k = \arg\min_{j} d(\mathbf{x_n}, \mu_j) \\ 0 & \text{otherwise} \end{cases}$$

$$\mu_{\mathbf{k}} = \frac{\sum_{n=1}^{N} z_{n,k} \cdot \mathbf{x_n}}{\sum_{n=1}^{N} z_{n,k}}$$

$$z_{n,k} = \begin{cases} 1 & k = \arg\min_{j} d(\mathbf{x_n}, \mu_j) \\ 0 & \text{otherwise} \end{cases}$$

Picking a new update rule

$$z_{n,1} = \frac{-d(\mathbf{x_n}, \mu_1)}{-d(\mathbf{x_n}, \mu_1) - d(\mathbf{x_n}, \mu_2)}$$
$$z_{n,k} = \frac{-d(\mathbf{x_n}, \mu_k)}{-\sum_{j=1}^{K} d(\mathbf{x_n}, \mu_j)}$$

Picking a new update rule

$$z_{n,k} = \frac{d(\mathbf{x_n}, \mu_k)}{\sum_j d(\mathbf{x_n}, \mu_j)}$$

Picking a new update rule

$$z_{n,k} = \frac{-\|\mathbf{x_n} - \mu_k\|^2}{-\sum_{j=1}^{K} \|\mathbf{x_n} - \mu_j\|^2}$$

$$z_{n,k} = \frac{-(\mathbf{x_n} - \mu_k)^{\top} \mathbf{I_K} (\mathbf{x_n} - \mu_k)}{\sum_{i=1}^{K} -(\mathbf{x_n} - \mu_i)^{\top} \mathbf{I_K} (\mathbf{x_n} - \mu_i)}$$

$$z_{n,k} = rac{-(\mathbf{x_n} - \mu_k)^{ op} \mathbf{I_K}(\mathbf{x_n} - \mu_k)}{\sum_{j=1}^{K} -(\mathbf{x_n} - \mu_j)^{ op} \mathbf{I_K}(\mathbf{x_n} - \mu_j)}$$
 $z_{n,k} = rac{ar{z}_{n,k}^{(\mathbf{x_n} - \mu_j)} \mathbf{X_n}(\mathbf{x_n} \mid \mu_k, \Sigma_k)}{\sum_{j=1}^{K} \mathbf{X_n} - \mathbf{X_n}} \mathbf{X_n} \mathbf{X_n}(\mathbf{x_n} \mid \mu_j, \Sigma_j)$
 $z_{n,k} = \frac{\mathbf{z}_{n,k}^{(\mathbf{x_n} - \mu_k)} \mathbf{X_n} \mathbf{X_n}}{\sum_{j=1}^{K} \mathbf{X_n} \mathbf{X_n}} \mathbf{X_n} \mathbf{X_n} \mathbf{X_n} \mathbf{X_n} \mathbf{X_n} \mathbf{X_n} \mathbf{X_n} \mathbf{X_n}$

$$z_{n,k} = \frac{\sum_{j=1}^{K} \exp\left(-(\mathbf{x_n} - \mu_j)^{\top} \mathbf{\Sigma_j} (\mathbf{x_n} - \mu_j)\right)}{\sum_{j=1}^{K} \exp\left(-(\mathbf{x_n} - \mu_j)^{\top} \mathbf{\Sigma_j} (\mathbf{x_n} - \mu_j)\right)}$$

$$z_{n,k} = \frac{(2\pi)^{-K/2} \sqrt{\det(\Sigma_k)} \exp\left(-(\mathbf{x_n} - \mu_k)^{\top} \mathbf{\Sigma_k} (\mathbf{x_n} - \mu_k)/2\right)}{\sum_{j=1}^{K} (2\pi)^{-K/2} \sqrt{\det(\Sigma_j)} \exp\left(-(\mathbf{x_n} - \mu_j)^{\top} \mathbf{\Sigma_j} (\mathbf{x_n} - \mu_j)/2\right)}$$

Generative Clustering Model

- Assume we have K clusters
- Each cluster represented by a multivariate Gaussian
- Generative process
 - Select a cluster (a Gaussian distribution)
 - Generate an example by sampling from the Gaussian

https://towardsdatascience.com/gaussian-mixture-models-explained-6986aaf5a95

Gaussian Mixtures

- Since we have multiple Gaussians generating points, we call the model Gaussian Mixture Model
- Why Gaussians?
 - Captures intuition about clusters
 - Examples are more likely to be near center of cluster

Gaussian Mixture Model

Cluster Responsibilities

 Cluster means, variances, and weight coefficients

$$\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} \qquad N_k = \sum_n \gamma(z_{nk})$$

$$\pi_k = \frac{N_k}{N} = \frac{N_k}{\sum_k N_k}$$

$$\boldsymbol{\mu}_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n$$

$$\boldsymbol{\Sigma}_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^T$$

Generative Clustering Model

- Assume we have K clusters
- Each cluster represented by a multivariate Gaussian
- Generative process
 - Select a cluster (a Gaussian distribution)
 - Generate an example by sampling from the Gaussian

https://towardsdatascience.com/gaussian-mixture-models-explained-6986aaf5a95

Problems with GMMs

- Mode collapse: cluster with a single example
 - Undefined variance: catch this and reset that cluster
- Non-convex likelihood: K! equivalent solutions
 - Random restarts may still be helpful
- Slower: requires more iterations than K-Means
 - And each iteration is more computationally expensive

Next time: Expectation Maximization

- K-Means and GMMs share a general algorithm:
- Initialize parameters that describe the data
- Repeat until converged:
 - 1. Compute assignment for every data point
 - 2. Update parameters based on those assignments
- What else can this algorithm do?

Maximum Likelihood from Incomplete Data Via the *EM* Algorithm

AP Dempster, NM Laird... - Journal of the Royal ..., 1977 - Wiley Online Library

A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the **algorithm** is derived. Many examples are sketched ...

