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If you’re interested in this material…



Correlation doesn’t imply causation, but…

•Carefully analyzing correlations is often our best or 
only approach to inferring causation

•Randomized experiments 
are impossible or unethical 
in many domains

•There are many methods that
can enable valid causal
inferences from observational
data



Probabilistic versus causal models

•Many models we’ve considered have a probabilistic
interpretation, but not necessarily a causal one
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How do we make our model causal?

•Causal assumptions are what separates whether we 
believe a graphical model:

1. Helps understand the data and predict the future, or
2. Accurately represents the real-world phenomena 

that generated the data

• If these assumptions are correct, we can make valid 
causal claims. If they’re wrong, our claims may be 
arbitrarily wrong!



A causal generative story
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Why is causal inference hard?
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Causal assumptions
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Causal assumptions
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Why is causal inference hard?



Assumptions in ML vs causal inference
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Aspirin and CVD, 2002, 2016, and 2021



Causal assumptions
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Counterfactual random variables

i Age Drug Recover (C) Recover (D)

1 Old C Yes ?

2 Young C Yes ?

3 Young C No ?

4 Young D ? Yes

5 Old D ? No

ID Age Drug Recover (C) Recover (D)

1 Old C Yes No

2 Young C Yes No

3 Young C No No

4 Young D Yes Yes

5 Old D No No



Derivation of the causal effect
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Figure 2-1. A simple causal DAG.

Surgery 1 Surgery 2

Young 93% 89%
Old 71% 68%
Total 78% 83%

Table 2-I. Simpson’s Paradox.

p(Y(a)) = Â
C

p(Y(a) | C)p(C) (2.1)

= Â
C

p(Y(a) | A, C)p(C) (2.2)

= Â
C

p(Y | A, C)p(C) (2.3)

This derivation relies primarily on two assumptions. (2.2) relies on the conditional

independence Y(a) ? A | C that is encoded in the DAG. In causal inference, an

independence between a counterfactual Y(a) and the treatment A is referred to

as (conditional) ignorability. If there were confounders other than C, we would

also need to condition on them; if there were unobserved confounders, we would

need additional assumptions. (2.3) follows from consistency; in our smoking

example, this can be described as the assumption that the act of smoking affects your

probability of cancer in the same way regardless of whether you chose to smoke or

were assigned to, or whether you smoke in the afternoon or evening (VanderWeele,

2009; Rehkopf, Glymour, and Osypuk, 2016). Consistency might be violated if

how smoking causes cancer depends on how much you smoke, but our analysis

erroneously assumes that smoking can be treated as a binary variable. Additionally,

given the cultural context, we might expect that a real-world experiment that forces

you to smoke cigarettes would be traumatic and otherwise influence your health

outcomes.

When a given set of assumptions suffices to connect the desired counterfactual

distribution to the observed data distribution, we say that our causal question is
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Connections back to machine learning

A C Y
1 1 0
0 1 1
0 0 1
1 0 1

(a) Simple Confounding

RA A C Y
1 1 1 0
0 ? 1 1
1 0 0 1
0 ? 0 1

(b) Missing Data

A⇤ C Y
0 1 0
0 1 1
0 0 1
1 0 1

(c) Measurement Error

A⇤ A
1 1
0 1
0 0
1 1

(d) Mismeasurement

Figure 2-3. Example data rows for causal inference without text data.

2.2.1 Missing Data

Our dataset has “missing data” if it contains individuals (instances) for which some

variables are sometimes, but not always, missing from the dataset. This may occur

if some survey respondents choose not to answer certain questions, or if certain

variables are difficult to collect and thus infrequently recorded. Missing data is

closely related to causal inference – both are interested in hypothetical distributions

that we cannot directly observe (Robins, Rotnitzky, and Scharfstein, 2000; Shpitser,

Mohan, and Pearl, 2015).

Consider a causal model where the treatment A is sometimes missing (Figure

2-2b). The variable RA is a binary indicator for whether A is observed (RA = 1) or

missing. The variable A(RA = 1), written as A(1), represents the counterfactual

value of A were it never missing. Finally, A is the observed proxy for A(1): it has

the same value as A(1) if RA = 1, and the special value “?” if RA = 0.

Solving missingness can seen as intervening to set RA to 1. Given p(A, RA, C, Y),

we want to recover p(A(1), C, Y). We may need to make a “Missing at Random”

(MAR) assumption, which says that the missingness process is independent of the
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Figure 2-2. DAGs for causal inference. Red variables are unobserved. A is a treatment,
Y is an outcome, and C is a confounder.

identified. Identification is a primary concern of causal inference and the subject of a

wide literature (Shpitser and Pearl, 2008). Simpson’s paradox, shown in Table 2-I,

highlights the challenge of confounding bias (Simpson, 1951; Blyth, 1972). In this

example, our treatment A is one of two surgeries, age is a confounder C, and the

cells of the table show the recovery probability: p (Y|A, C). If we compare surgeries

within age groups, Surgery 1 looks superior; but if we aggregate across all patients,

Surgery 2 looks better. To correctly conclude that Surgery 1 is best, we need to know

that a patient’s age may influence surgery, but surgery cannot change one’s age.

This critical distinction is represented in the DAG in Figure 2-1 by the edge from C to

A. For a real-world problem, if we don’t know the causal structure, we may not be

able to learn anything from causal methods. Similarly, if any of the variables that are

relevant to our analysis are not recorded in our dataset, our desired counterfactual

may be unidentified and our causal question may be unanswerable.

2.2 Measurement Error and Missing Data

Real-world observational data is messy and often imperfectly collected. While

unobserved variables can render causal questions unanswerable, there are many

approaches that can recover from data recorded with missing values or systematic

mismeasurement.
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Causal inference with ML methods



Causal inference with ML methods

cardiothoracic surgery history of present illness 
seventy two year old retired pediatric 
cardiologist presents with increasing angina and 
shortness of breath a stress test performed in was 
positive ejection fraction was past medical history 
hypertension hypercholesterolemia cigarette 
smoking but quit in the gastrointestinal bleeding 
in he has never had a stroke tia or claudication



If you’re interested in this material…


