Sound Object Labeling Hugo Flores García

Fall 2021

Sound object labeling

Organizing large sample libraries

Grouping tracks in a DAW

An array of real values

Building a system that automatically labels an audio event

Bongjun Kim (Winter 2019)

Goal

Machine Learning: Classification

Overview of general classification tasks

Input data

Feature representation

A vector of numbers

 $\overrightarrow{x} = \langle a_1, a_2, ..., a_n \rangle$

...that represent attributes of the example.

Bongjun Kim and Hugo Flores García

- Neural Networks

"Piano"

Classification Tasks

Bongjun Kim and Hugo Flores García

Feature selection is important

 how points in the feature space cluster is important

bad feature representation

Bongjun Kim and Hugo Flores García

good feature representation

Different Classifiers

The same feature space could be meaningful for different ways of classifying data.

Bongjun Kim and Hugo Flores García

Bryan Pardo, EECS 352 Spring 2012

K-Nearest Neighbor (KNN) Classifier

- When you see a new instance x to classify, find the most similar training example(s) and assign their label to the instance.
- How do you tell what things are similar?
 - 1. Extract proper features.
 - 2. Measure distance / similarity in the feature space.

K-Nearest Neighbor (KNN) Classifier

Considering 4 nearest neighbors (k=4), X is probably a

Bongjun Kim (Winter 2019)

feature 2

Now that we know.

Bongjun Kim and Hugo Flores García

Audio event classification

Input data

Bongjun Kim and Hugo Flores García

How do we extract meaningful representations from waveforms?

Some audio recording basics

Bryan Pardo

Bryan Pardo

Voltage over time

Bryan Pardo

Bryan Pardo

Voltage over time

Why not use the waveform as a feature representation?

Bongjun Kim and Hugo Flores García

Why not use the waveform as a feature representation?

van den Oord et al. 2016

Need a very powerful model (like a deep neural net) which requires millions of training examples.

Bongjun Kim and Hugo Flores García

1 Second

1 second of audio at 44.1kHZ \rightarrow 44,100 values!

It's hard to find meaningful patterns!

Why not use the waveform as a feature representation?

van den Oord et al. 2016

How do we preprocess the audio waveform to obtain meaningful representations?

Bongjun Kim and Hugo Flores García

1 Second

Zero-crossing rate lacksquare

- Time-domain feature
- Rate of sign changes in a signal \bullet
- Low for harmonic sounds, high for noisy sounds \bullet

* Figure: https://en.wikipedia.org/wiki/Zero_crossing

• Zero-crossing rate

- Spectral centroid
 - Frequency domain feature
 - The weighted mean of the frequencies in the signal
 - Known as a predictor of the "brightness" lacksquareof a sound

* figure: https://librosa.github.io/librosa/generated/librosa.feature.spectral_centroid.html

Spectral centroid

Kick drum

Example: Drum Transcription

• Let's build a drum transcription machine only using spectral centroid features

Onset detection: librosa.onset.onset_detect

- Segmentation
 - Cutting the recording every <onset-2048 samples>

• Extracting spectral centroid from each segment

• More challenging example

Bongjun Kim

info

Bongjun Kim

Onset detection might not work that well on this example, but let's assume we have perfect onset

Segmentation and feature extraction

• The previous example

Bongjun Kim

• More challenging example

You can find more feature extraction functions in the Librosa package

Bongjun Kim

- Spectrogram
 - Plots the magnitude of the frequency spectrum as a function of time.

Frequency (Hz)

Lo-res image (Usually 256x199 for 1 second of audio)

Bongjun Kim

Bryan Pardo

Lower dimensionality than a pure waveform, but it is still high dimensional!

Commonly used audio features

• Mel Frequency Cepstral Coefficients (MFCCs)

~10 times smaller than a spectrogram!

Plots the envelope of the spectrum with just a few coefficients (usually 13)

The standard for speech recognition before deep learning!

Deep Embeddings

• Can we use a neural net to generate meaningful features?

log-Mel spectrogram

128-dim embedding vector

Deep Embeddings: Transfer Learning

classifier

spectrogram

Train on a "pretext" task to learn a meaningful internal representation! (aka transfer learning)

Deep Embeddings: VGGish (Simoyan et al. 2015)

The original "deep audio embedding"

Trained on an Audio Tagging task on Audioset (subset of YouTube)

https://medium.com/@yxu71/freesound-tagging-by-vggish-with-knn-731dc3e1dc5a

128-dim embedding vector

Deep Embeddings: OpenL3

L³-Net (aka OpenL3)

Predict whether an audio clip and an image correspond to each other (audiovisual correspondence)

Train on LOTS of data (all of YouTube if you want!)

pretext task — only for learning a meaningful representation

No labels needed! (Self-supervised)

and Cramer et al., 2019

Deep Embeddings: TriCycle (Cartwright et al. 2019)

Given an audio clip, predict temporal cycles!

self-supervised: all you need are the timestamps!

512-dim embedding vector

1 s Mel-Spectrogram Input

Dimensionality Reduction

1024-dim embedding vector

Aka how can we visualize high-dimensionality embedding spaces?

2-dim projection of embedding space

Goal: find a linear projection of your dataset, such that you can keep the axes with the **most** variation

> **Dimensions with most variation** "Principal components"

PCA (Principal Component Analysis)

Independent Variable x

t-SNE (T-distributed Stochastic Neighbor Embedding)

Goal: find a nonlinear projection of your dataset, such that the local relationships between points are preserved.

Iterative algorithm (slow)!

9

Musical Instrument ID (MIID)

The Dataset

Philharmonia Dataset

- 14,000 sound samples of the Philharmonia Orchestra
- Mostly single notes of isolated instruments, 1-5s in length
- 19 melodic instruments + many percussion instruments

Some Links I Shared

Google's infinite drum machine: https://experiments.withgoogle.com/ai/drum-machine/view/

VQGAN + CLIP: https://colab.research.google.com/drive/1L8oL-vLJXVcRzCFbPwOoMkPKJ8-aYdPN#scrollTo=ix4T6qkRqZgi

> huggingface spaces https://huggingface.co/spaces