Adversarial Attacks in the Audio Domain

CS349 Machine Learning Northwestern University 12.1.21

Patrick O'Reilly

github.com/oreillyp/adv_audio_intro

 $+.007 \times$

 \boldsymbol{x}

"panda" 57.7% confidence

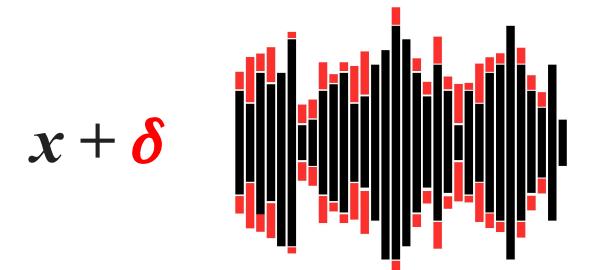
 $\mathrm{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$

"nematode" 8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon" 99.3 % confidence

(Goodfellow et al. 2014)

X



Neural Networks Power Voice Interfaces

Voice-based machine-learning systems for authentication and control are common in products such as mobile devices, vehicles, and household appliances.

What Systems Might Attackers Target?

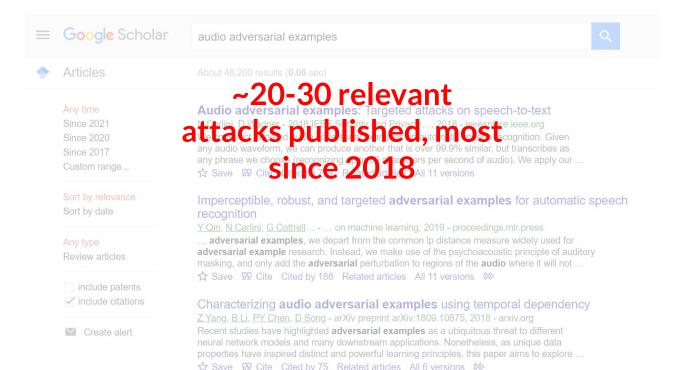
What Systems Might Attackers Target?

Recognize "Hey Alexa," "OK Google," "stop," "go," ... Verify a speaker's identity (against enrolled profile)

Transcribe all incoming speech

Wake-word detection, speech command recognition Automatic speaker verification, speaker recognition Automatic speech recognition

Google Scholar	audio adversarial examples			
Articles	About 48,200 results 0.06 sec)			
Any time Since 2021 Since 2020 Since 2017 Custom range	Audio adversarial examples: Targeted attacks on speech-to-text <u>N Carlini, D Wagner</u> - 2018 IEEE Security and Privacy, 2018 - ieeexplore.ieee.org We construct targeted audio adversarial examples on automatic speech recognition. Given any audio waveform, we can produce another that is over 99.9% similar, but transcribes as any phrase we choose (recognizing up to 50 characters per second of audio). We apply our ☆ Save 59 Cite Cited by 714 Related articles All 11 versions			
Sort by relevance Sort by date	Imperceptible, robust, and targeted adversarial examples for automatic speech recognition			
Any type Review articles	<u>Y Qin</u> , <u>N Carlini</u> , <u>G Cottrell</u> on machine learning, 2019 - proceedings.mlr.press adversarial examples, we depart from the common lp distance measure widely used for adversarial example research. Instead, we make use of the psychoacoustic principle of auditory masking, and only add the adversarial perturbation to regions of the audio where it will not			
include patents	☆ Save 57 Cite Cited by 188 Related articles All 11 versions ≫			
✓ include citations	Characterizing audio adversarial examples using temporal dependency			
Create alert	Z Yang, <u>B Li</u> , <u>PY Chen</u> , <u>D Song</u> - arXiv preprint arXiv:1809.10875, 2018 - arXiv.org Recent studies have highlighted adversarial examples as a ubiquitous threat to different neural network models and many downstream applications. Nonetheless, as unique data properties have inspired distinct and powerful learning principles, this paper aims to explore ☆ Save ワワ Cite Cited by 75 Related articles All 6 versions ≫			



What Systems Might Attackers Target?

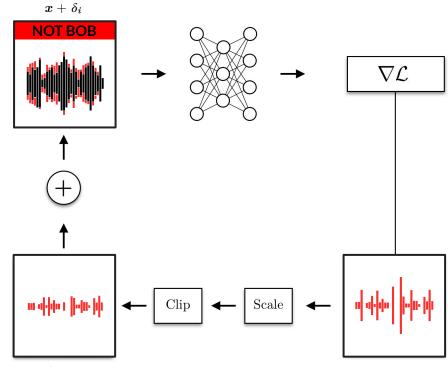
Recognize "Hey Alexa," "OK Google," "stop," "go," ...

Wake-word detection, speech command recognition Verify a speaker's identity (against enrolled profile)

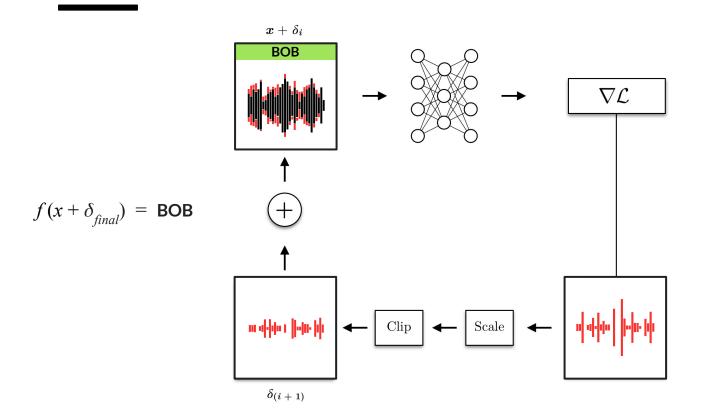
Automatic speaker verification, speaker recognition Transcribe all incoming speech

Automatic speech recognition

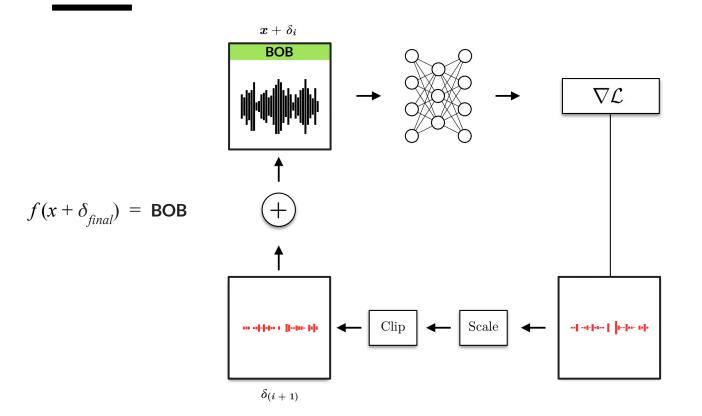
How Do We Make Adversarial Examples?



How Do We Make Adversarial Examples?



How Do We Make Adversarial Examples?



Effective and Inconspicuous Over-the-Air Adversarial Examples with Adaptive Filtering

Patrick O'Reilly¹, Pranjal Awasthi², Aravindan Vijayaraghavan¹, Bryan Pardo¹ Submitted to ICASSP '22

- 1. Northwestern University
- 2. Google Research

interactiveaudiolab.github.io/project/audio-adversarial-examples.html

	NOT BOB Image: state of the
	"Generic"
Approach	<mark>image-domain</mark> (sample-wise additive noise)
Perceptual Regularization	simple (L ₂ penalty)
Perceptual Quality	poor (perturbation is obvious)

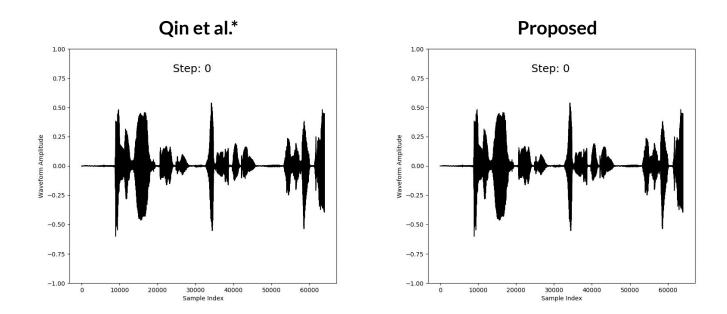
12

*Qin et al. (2019), Szurley & Kolter (2019), Dörr et al. (2020), Wang et al. (2020)	NOT BOB	BOB	
	"Generic"	Qin et al.*	
Approach	image-domain (sample-wise additive noise)	image-domain (sample-wise additive noise)	
Perceptual Regularization	simple (L ₂ penalty)	complex (frequency masking loss)	
Perceptual Quality	poor (perturbation is obvious)	good (perturbation is subtle)	

13

*Qin et al. (2019), Szurley & Kolter (2019), Dörr et al. (2020), Wang et al. (2020)	NOT BOB	BOB	
	"Generic"	Qin et al.*	Proposed
Approach	image-domain (sample-wise additive noise)	image-domain (sample-wise additive noise)	audio-domain (adaptive filtering)
Perceptual Regularization	simple (L ₂ penalty)	complex (frequency masking loss)	simple (<i>L</i> ₂ penalty)
Perceptual Quality	poor (perturbation is obvious)	good (perturbation is subtle)	good (perturbation is subtle) 14

*Qin et al. (2019), Szurley & Kolter (2019), Dörr et al. (2020), Wang et al. (2020)	NOT BOB	BOB	
	"Generic"	Qin et al.*	Proposed
Approach	×	×	\checkmark
Perceptual Regularization	\checkmark	×	\checkmark
Perceptual Quality	×		



 $+.007 \times$

 \boldsymbol{x}

"panda" 57.7% confidence

 $\mathrm{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$

"nematode" 8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon" 99.3 % confidence

(Goodfellow et al. 2014)

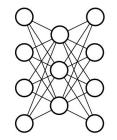
Let's Attack a Voice Interface

Let's Attack a Voice Interface: Pick a Task

Speaker Verification: confirm a speaker's claimed identity (against enrolled profile)

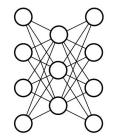
Let's Attack a Voice Interface: Pick a Task

We want a **large** and **accurate** model, as in many applications (e.g. mobile banking) speaker verification models are deployed in the cloud rather than on-device.

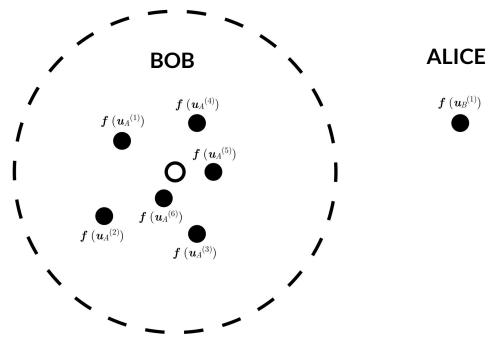


Let's Attack a Voice Interface: Pick a Task

Specifically, we'll use the **ResNetSE34V2** model proposed by Heo et al. (2020), available at <u>https://github.com/clovaai/voxceleb_trainer</u>

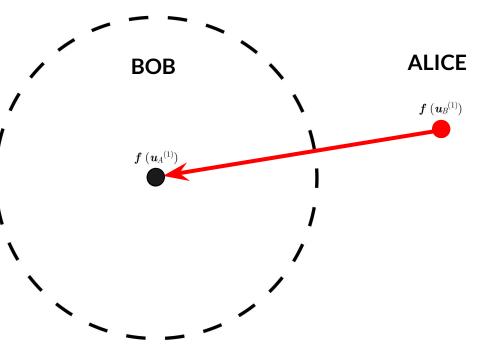


Let's Attack a Voice Interface: Pick an Objective

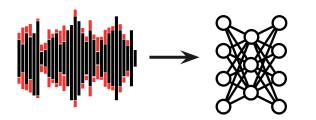


Let's Attack a Voice Interface: Pick an Objective

Following Zhang et al. (2021), for the sake of simplicity we will attempt to spoof the embedding of a single utterance.

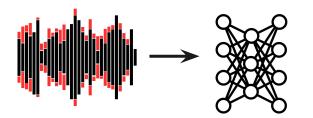


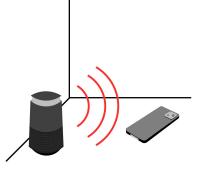
Over-the-line setting: the attack audio can be fed directly to the victim model over a purely digital channel.



Over-the-line setting: the attack audio can be fed directly to the victim model over a purely digital channel.

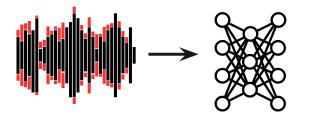
Over-the-air setting: malicious audio is played through a speaker and received by a microphone before entering the victim model.

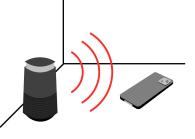




Over-the-line setting: the attack audio can be fed directly to the victim model over a purely digital channel.

Over-the-air setting: malicious audio is played through a speaker and received by a microphone before entering the victim model.

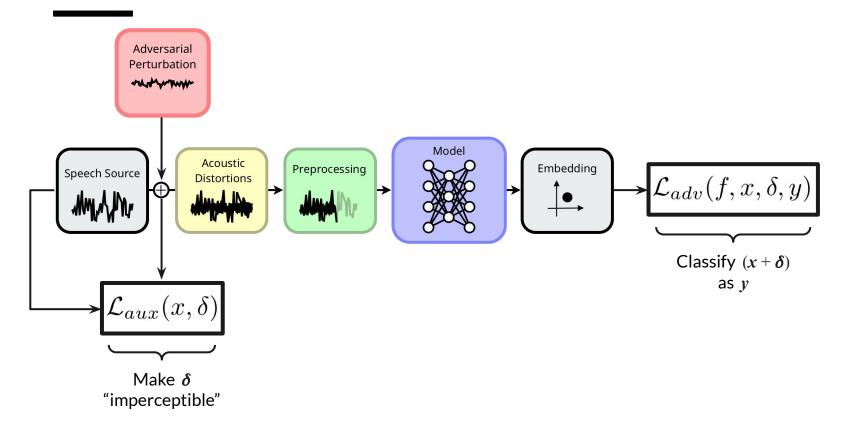




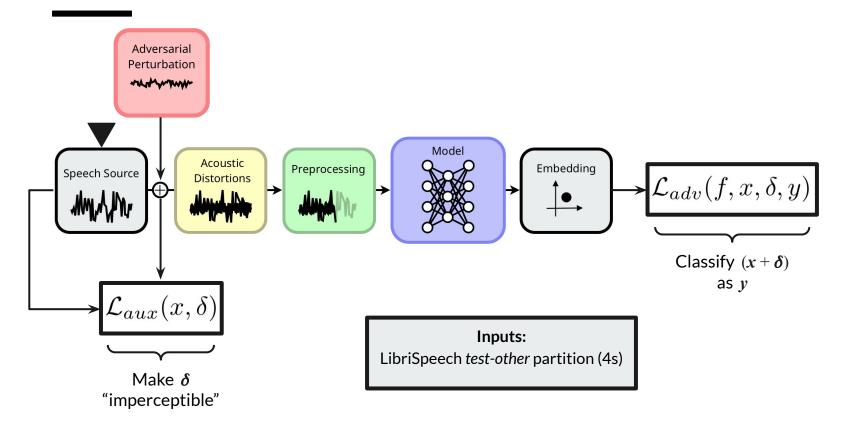
Over-the-line setting: the attack audio can be fed directly to the victim model over a purely digital channel.

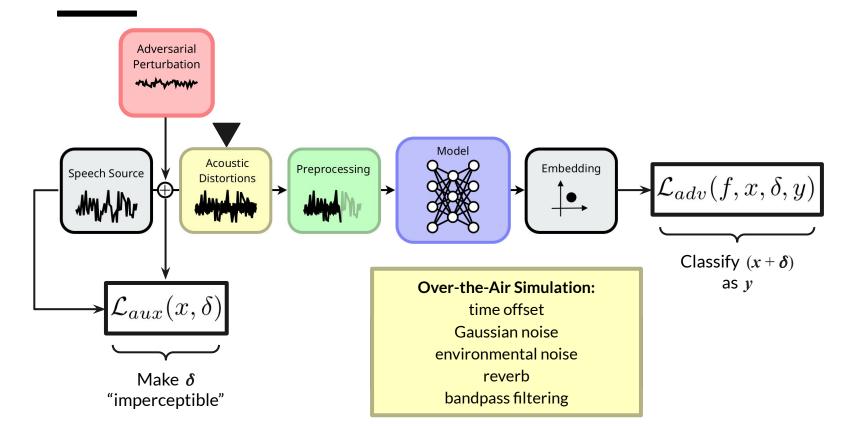
Over-the-air setting: malicious audio is played through a speaker and received by a microphone before entering the victim model.

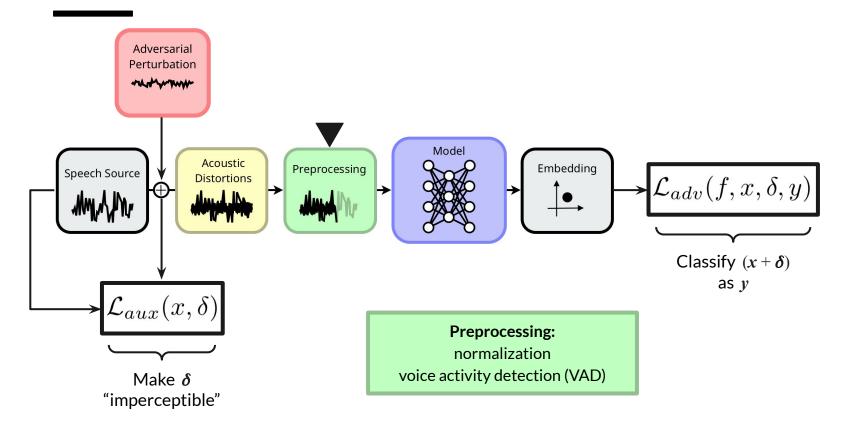
Let's Attack a Voice Interface: System Design

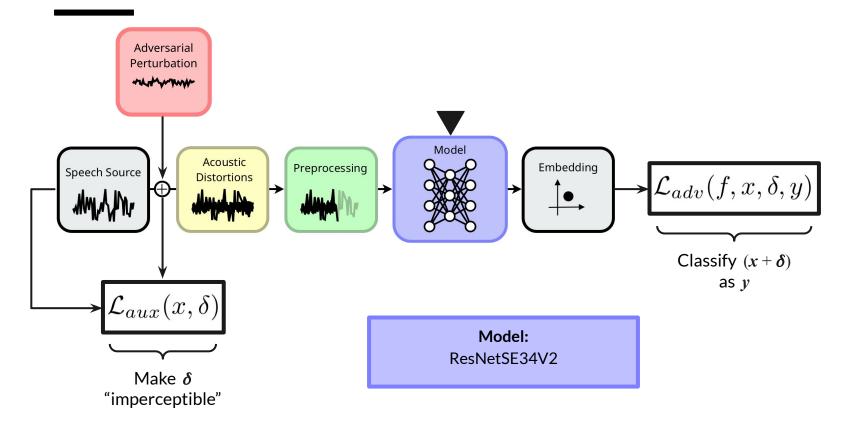


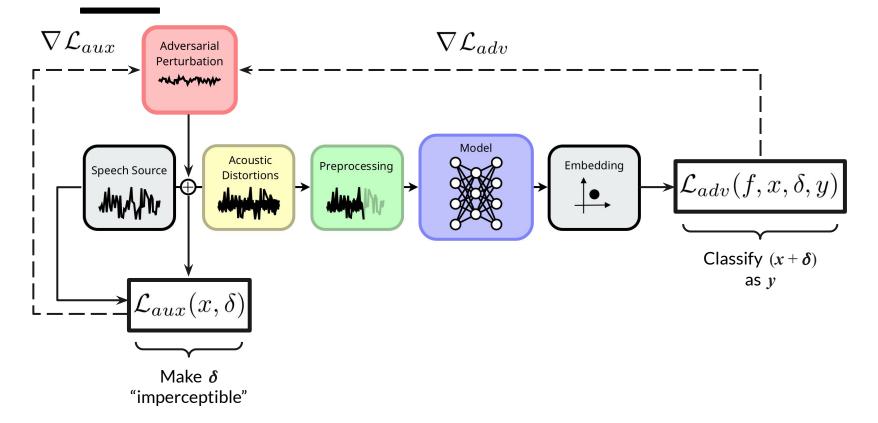
Let's Attack a Voice Interface: System Design



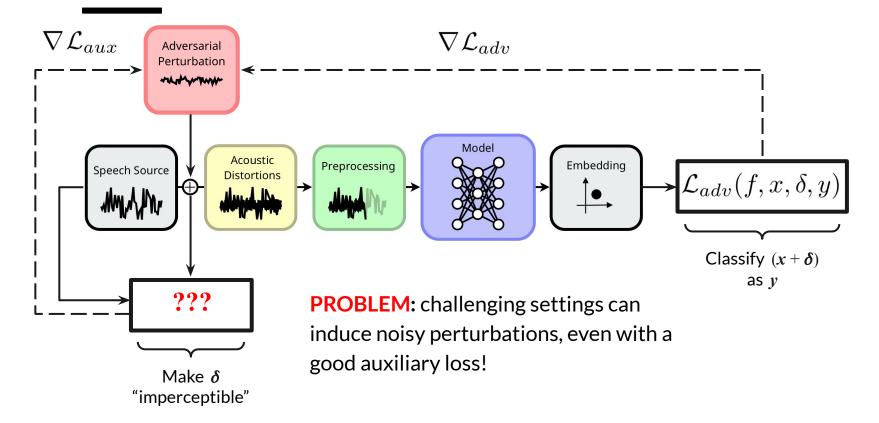








Let's Attack a Voice Interface: The Noise Issue

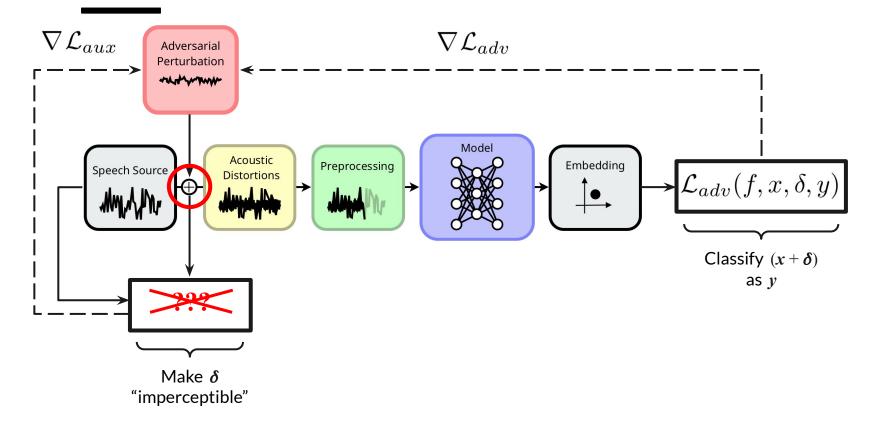


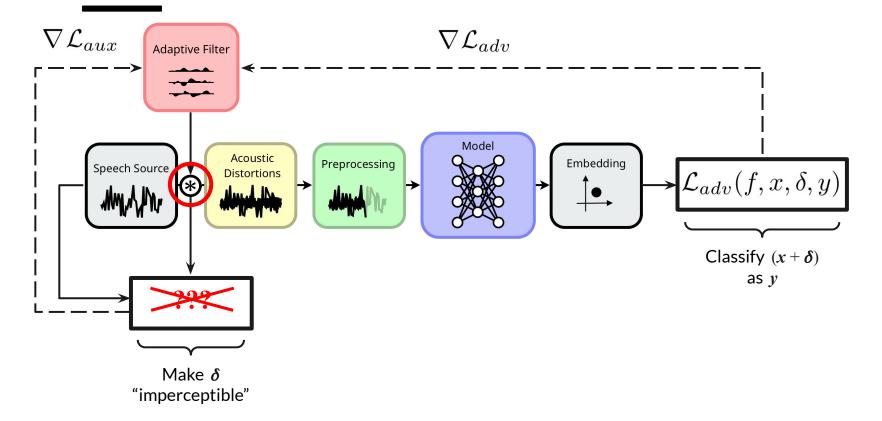
Let's Attack a Voice Interface: Pick an Attack

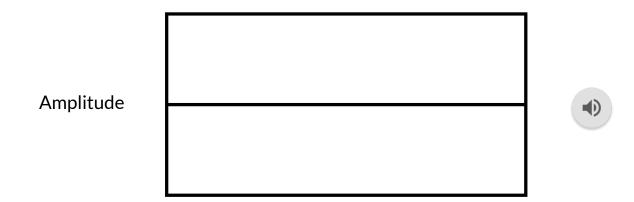
Qin et al. (2019): speech recognition

Li et al. (2020): speaker recognition

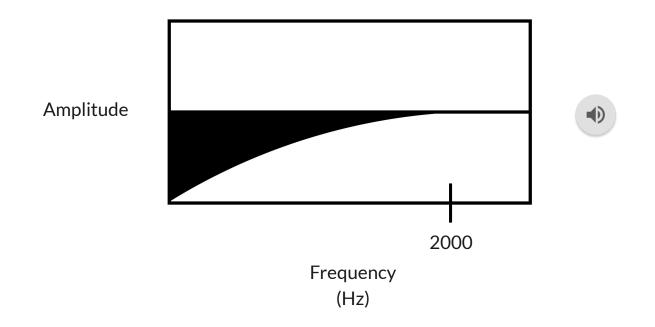
Chen et al. (2020): speech recognition

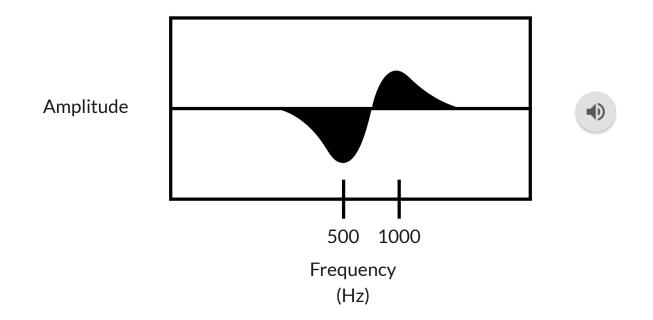


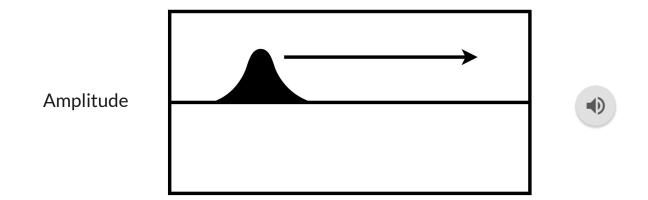




Frequency (Hz)

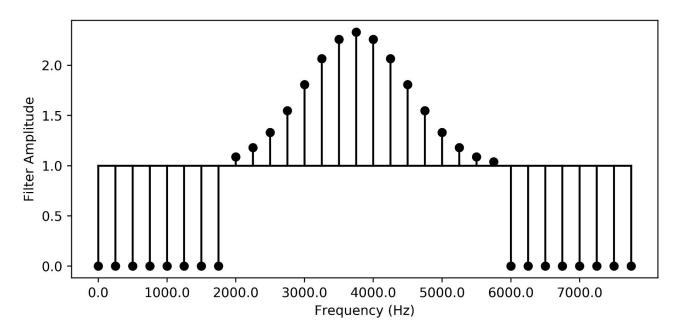


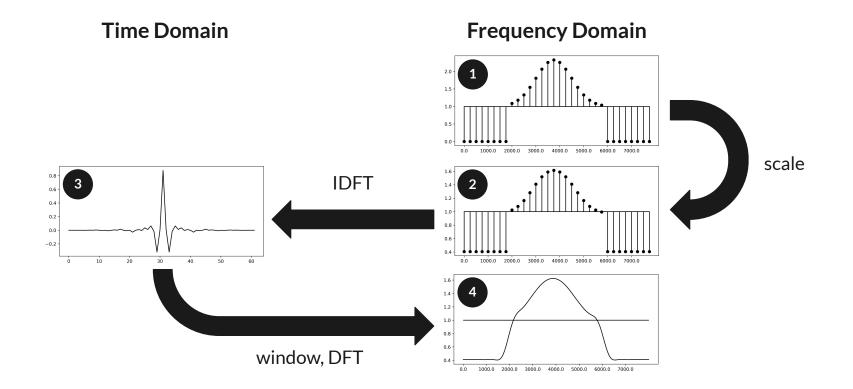


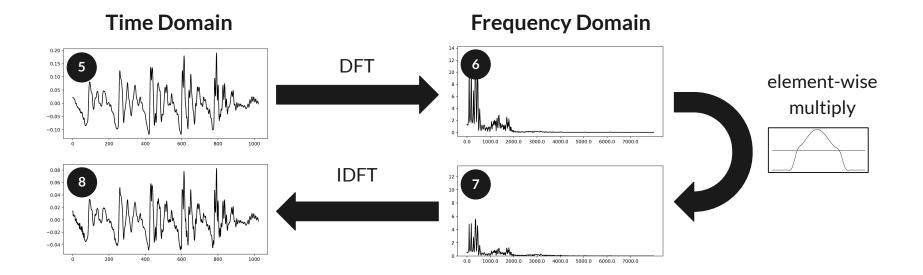


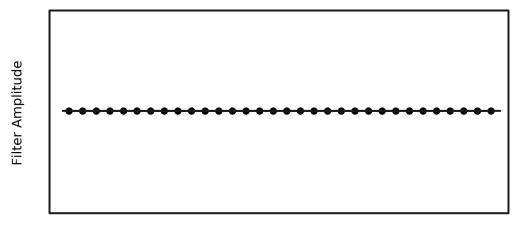
Frequency (Hz)

Filter Amplitudes (Unscaled)

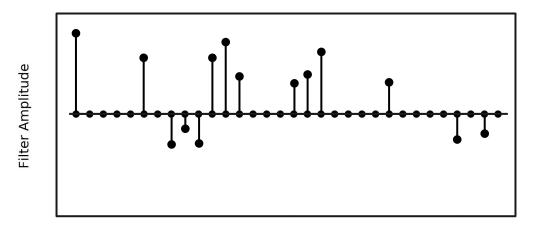




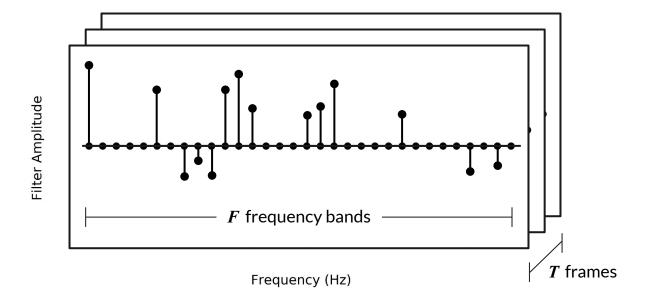




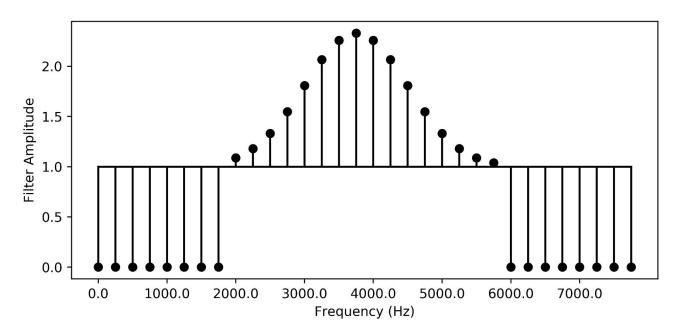
Frequency (Hz)

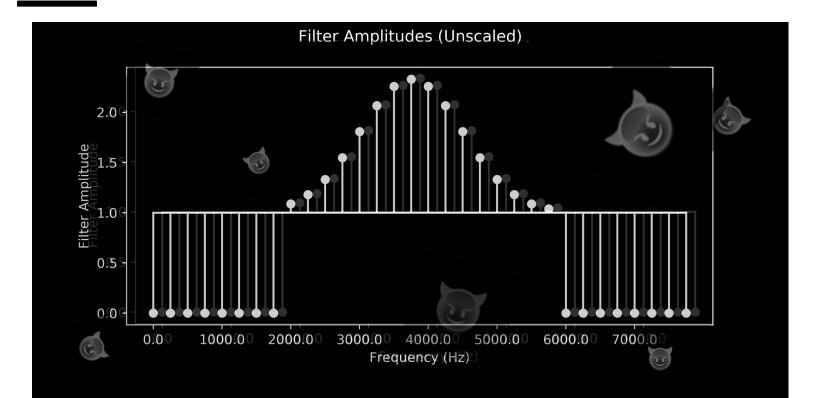


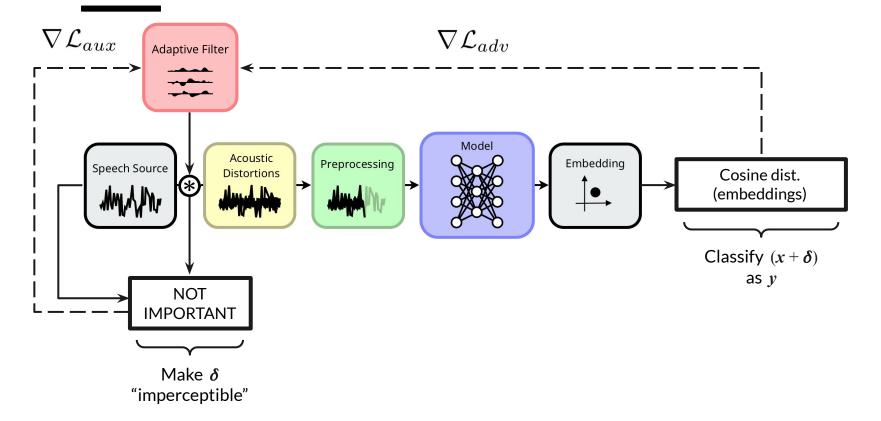
Frequency (Hz)

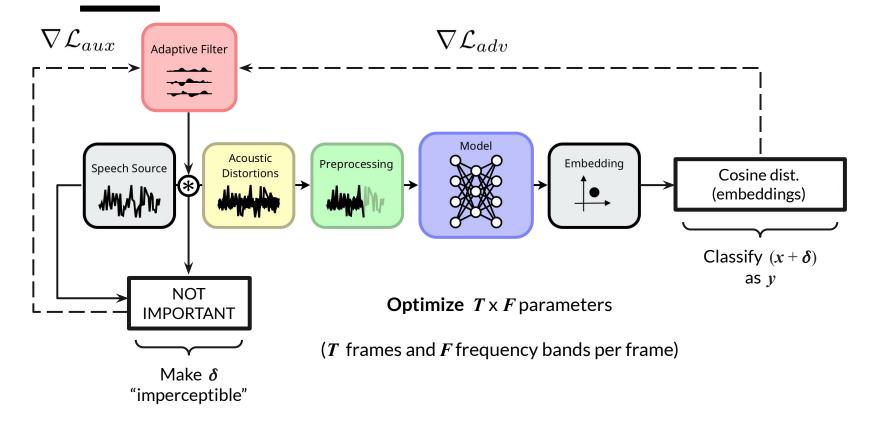


Filter Amplitudes (Unscaled)

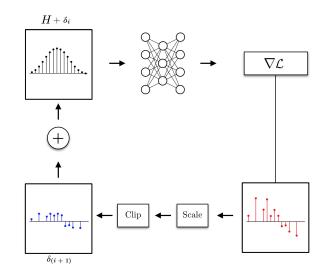




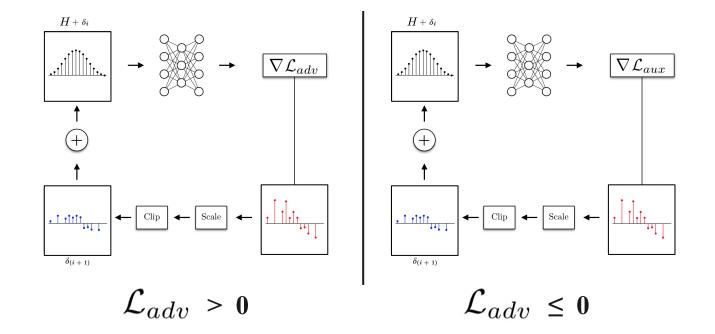




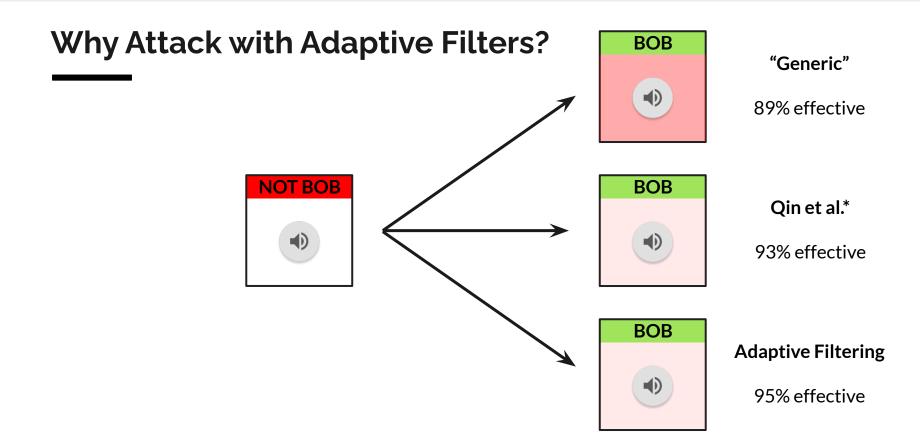
Recall the iterative adversarial optimization procedure we discussed earlier.

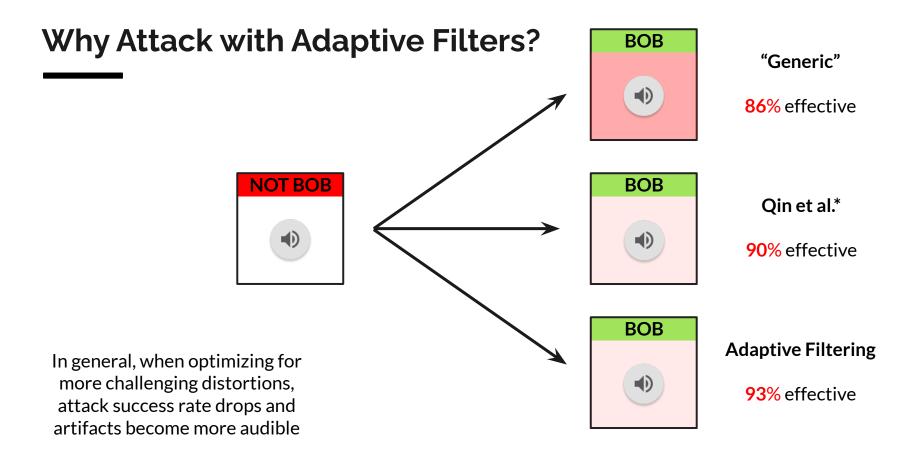


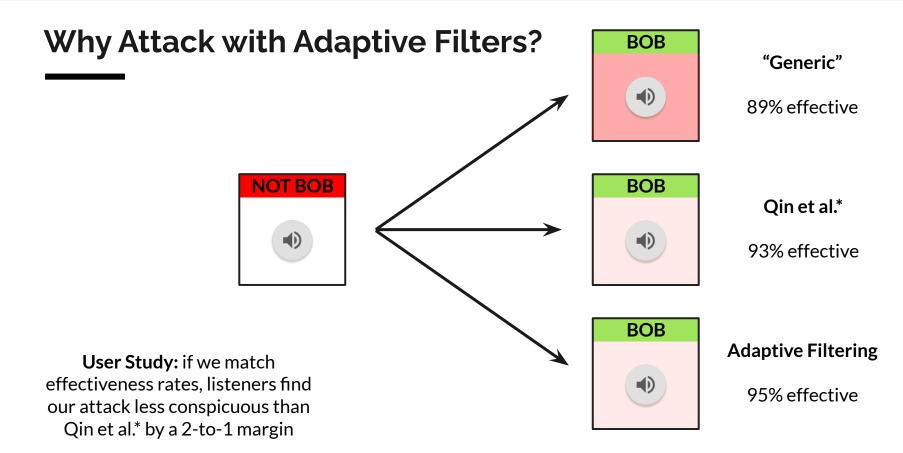
Selective projected gradient descent (Bryniarski et al. 2021) - break up the updates



1. Introducing perturbations at the filter representation, rather than the waveform, avoids noise-like artifacts







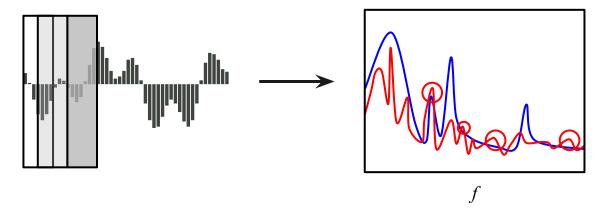
Perceptual Study

	Waveform L_∞	Waveform L_2	Forced Choice	
Qin et al.*	0.08	1.97	34.1%	
Adaptive Filtering	0.23	6.59	65.9%	

Perceptual Study

	Waveform L_∞	Waveform L_2	Forced Choice	
Qin et al.*				
Adaptive Filtering	2.88x	3.35x	1.93x	

2. When we use filters, we do not need a complex perceptual loss to produce inconspicuous attacks



Two-stage frequency-masking attack: Qin et al. (2019), Szurley & Kolter (2019), Dörr et al. (2020), Wang et al. (2020)

Future Directions

Other recent works have also begun exploring attacks at representations other than the waveform (e.g. *FoolHD*, *PhaseFool*, *Adversarial Music*)

Future Directions

Other recent works have also begun exploring attacks at representations other than the waveform (e.g. *FooIHD*, *PhaseFooI*, *Adversarial Music*)

We plan to explore filter-based attacks against more robust speaker verification pipelines, as well as other speech systems

Future Directions

Other recent works have also begun exploring attacks at representations other than the waveform (e.g. *FooIHD*, *PhaseFooI*, *Adversarial Music*)

We plan to explore filter-based attacks against more robust speaker verification pipelines, as well as other speech systems

We also plan to explore the implications of this work for improving the robustness of audio models against large-magnitude frequency-domain perturbations

Adversarial Attacks in the Audio Domain with Adaptive Filtering

Patrick O'Reilly¹, Pranjal Awasthi², Aravindan Vijayaraghavan¹, Bryan Pardo¹

https://interactiveaudiolab.github.io/project/audio-adversarial-examples.html

Ð

- 1. Northwestern University
- 2. Google Research

Thanks!