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Neural Networks Power Voice Interfaces

Voice-based machine-learning systems for authentication and control are common in 

products such as mobile devices, vehicles, and household appliances.
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How Should We Attack?

BOBNOT BOB



Effective and Inconspicuous 
Over-the-Air Adversarial Examples 
with Adaptive Filtering

interactiveaudiolab.github.io/project/audio-adversarial-examples.html

Patrick O’Reilly1, Pranjal Awasthi2, Aravindan Vijayaraghavan1, Bryan Pardo1

Submitted to ICASSP ‘22

1. Northwestern University
2. Google Research
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Qin et al.* Proposed

How Should We Attack?
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Adversarial Examples Fool Neural Networks

(Goodfellow et al. 2014)
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Let’s Attack a Voice Interface
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Let’s Attack a Voice Interface: Pick a Task

Speaker Verification: confirm a speaker’s claimed identity (against enrolled profile)

NOT BOB BOB
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Let’s Attack a Voice Interface: Pick a Task

We want a large and accurate model, as in many applications (e.g. mobile banking) 

speaker verification models are deployed in the cloud rather than on-device.



19

Let’s Attack a Voice Interface: Pick a Task

Specifically, we’ll use the ResNetSE34V2 model proposed by Heo et al. (2020), 

available at https://github.com/clovaai/voxceleb_trainer

https://github.com/clovaai/voxceleb_trainer
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Let’s Attack a Voice Interface: Pick an Objective

Following Zhang et al. (2021), for 

the sake of simplicity we will 

attempt to spoof the embedding of 

a single utterance.
BOB ALICE
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Let’s Attack a Voice Interface: System Design

Classify  (x + 𝛿) 
as  y

Make  𝛿 
“imperceptible”

Inputs: 
LibriSpeech test-other partition (4s)

Over-the-Air Simulation: 
time offset

Gaussian noise

environmental noise
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bandpass filtering
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Let’s Attack a Voice Interface: System Design

Classify  (x + 𝛿) 
as  y

Make  𝛿 
“imperceptible”

Preprocessing: 
normalization

voice activity detection (VAD)
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Let’s Attack a Voice Interface: System Design

Classify  (x + 𝛿) 
as  y

Make  𝛿 
“imperceptible”

Model: 
ResNetSE34V2
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Let’s Attack a Voice Interface: The Noise Issue

Classify  (x + 𝛿) 
as  y

Make  𝛿 
“imperceptible”

PROBLEM: challenging settings can 

induce noisy perturbations, even with a 

good auxiliary loss! 

???
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Let’s Attack a Voice Interface: Pick an Attack

Qin et al. (2019): speech recognition

Li et al. (2020): speaker recognition

Chen et al. (2020): speech recognition
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Let’s Attack a Voice Interface: System Design
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Let’s Attack a Voice Interface: Adaptive Filter Attack

Classify  (x + 𝛿) 
as  y
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“imperceptible”
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Adaptive Filters Let Us Shape Frequency Content
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Adaptive Filters Let Us Shape Frequency Content

F  frequency bands

T  frames
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Let’s Attack a Voice Interface: Adaptive Filter Attack
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Let’s Attack a Voice Interface: Adaptive Filter Attack

Classify  (x + 𝛿) 
as  y

Make  𝛿 
“imperceptible”

Cosine dist. 
(embeddings)

NOT 
IMPORTANT Optimize  T x F parameters 

(T  frames and F frequency bands per frame)
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Let’s Attack a Voice Interface: Adaptive Filter Attack

Recall the iterative adversarial optimization procedure we discussed earlier.
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Let’s Attack a Voice Interface: Adaptive Filter Attack

Selective projected gradient descent (Bryniarski et al. 2021) - break up the updates

 >  0  ≤  0
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Why Attack with Adaptive Filters?
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Why Attack with Adaptive Filters?

1. Introducing perturbations at the filter 
representation, rather than the waveform, avoids 
noise-like artifacts
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Why Attack with Adaptive Filters? BOB

NOT BOB BOB

BOB

“Generic”

86% effective

Qin et al.*

90% effective

Adaptive Filtering

93% effective

In general, when optimizing for 
more challenging distortions,  
attack success rate drops and 

artifacts become more audible
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Why Attack with Adaptive Filters? BOB

NOT BOB BOB

BOB

User Study: if we match 
effectiveness rates, listeners find 
our attack less conspicuous than 

Qin et al.* by a 2-to-1 margin

“Generic”

89% effective

Qin et al.*

93% effective

Adaptive Filtering

95% effective
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Why Attack with Adaptive Filters?

Adaptive Filtering

Qin et al.* 0.08

0.23

1.97

6.59

Waveform Waveform 

Perceptual Study

Forced Choice

34.1%

65.9%



41

Why Attack with Adaptive Filters?

Adaptive Filtering

Qin et al.* --

2.88x

--

3.35x

Waveform Waveform 

Perceptual Study

--

1.93x

Forced Choice
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Why Attack with Adaptive Filters?

2. When we use filters, we do not need a complex 
perceptual loss to produce inconspicuous attacks
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Why Attack with Adaptive Filters?

f

Two-stage frequency-masking attack: Qin et al. (2019), Szurley & Kolter 
(2019), Dörr et al. (2020), Wang et al. (2020) 
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Future Directions

Other recent works have also begun exploring attacks at representations other than 

the waveform (e.g. FoolHD, PhaseFool, Adversarial Music)

We plan to explore filter-based attacks against more robust speaker verification 

pipelines, as well as other speech systems

We also plan to explore the implications of this work for improving the robustness of 

audio models against large-magnitude frequency-domain perturbations
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